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Figure 1: We present Cue3D, the first comprehensive, model-agnostic framework for quantifying the
influence of individual image cues in single-image 3D generation. Left: Our unified evaluation of
single-image 3D generation methods. Right: Performance robustness to the perturbation of each cue,
lower values indicate higher importance. We show representative methods on Toys4K dataset for
clarity; additional figures are available in the Appendix.

Abstract

Humans and traditional computer vision methods rely on a diverse set of monoc-
ular cues to infer 3D structure from a single image, such as shading, texture,
silhouette, etc. While recent deep generative models have dramatically advanced
single-image 3D generation, it remains unclear which image cues these methods
actually exploit. We introduce Cue3D, the first comprehensive, model-agnostic
framework for quantifying the influence of individual image cues in single-image
3D generation. Our unified benchmark evaluates seven state-of-the-art methods,
spanning regression-based, multi-view, and native 3D generative paradigms. By
systematically perturbing cues such as shading, texture, silhouette, perspective,
edges, and local continuity, we measure their impact on 3D output quality. Our
analysis reveals that shape meaningfulness, not texture, dictates generalization.
Geometric cues, particularly shading, are crucial for 3D generation. We further
identify over-reliance on provided silhouettes and diverse sensitivities to cues such
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as perspective and local continuity across model families. By dissecting these
dependencies, Cue3D advances our understanding of how modern 3D networks
leverage classical vision cues, and offers directions for developing more transparent,
robust, and controllable single-image 3D generation models.

1 Introduction
Generating a 3D model from a single 2D image is a long-standing goal in computer vision, with
broad applications in content creation, AR/VR, and graphics. Humans effortlessly recover 3D shape
from a single view by exploiting a variety of monocular cues [3, 14, 30, 39]. Decades of research
in classical computer vision studied these explicit monocular cues for shape inference, including
shading patterns [19, 57], texture cues [37], silhouette contours [25], and many more. Recently,
a new generation of single-image-to-3D methods has dramatically advanced the state of the art,
fueled by large datasets [9] and advances in deep generative models [17]. These approaches can
be grouped into three prominent categories: (i) Regression-based models that directly predict a 3D
representation from the input image via a feed-forward network (e.g., LRM [18], SF3D [6]), (ii)
Multi-view methods that generates novel views consistent with the input image, then regress to a
3D model (e.g., CRM [51], LGM [45], InstantMesh [55]), and (iii) Native 3D generative models
that treat single-image-to-3D as a conditional generation problem in a learned 3D latent space (e.g.,
Trellis [52] and Hunyuan3D-2 [58]). These approaches have enabled fast generation of textured 3D
meshes from a single image, with impressive fidelity and generalization far beyond earlier methods.

Despite this rapid progress, the interpretability of single-image 3D networks remains largely under-
explored. Current models are learned end-to-end on 3D supervision, and they operate as complex
black boxes: we have little understanding of what information they rely on to infer 3D shape from
a single image. Do these networks internally exploit the same set of visual cues as classical meth-
ods [19, 25, 37, 57], or do they rely on other information such as high-level semantics? Improving
transparency in this process is important both scientifically, to connect with vision science and inform
future model design, and practically, to diagnose failure modes and biases of these 3D generators.

To address this gap, we present Cue3D, the first comprehensive, model-agnostic framework for quan-
tifying the influence of individual image cues in single-view 3D generation. We begin by establishing
a unified benchmark covering seven state-of-the-art methods spanning regression-based, multi-
view, and native 3D generative paradigms. We evaluate them on two standard datasets (GSO [10],
Toys4K [44]). For each predicted mesh, we assess (1) both 2D appearance and 3D geometric quality
for the entire shape, (2) 2D and 3D quality of the visible surface from the input viewpoint, and (3) the
agreement between output and ground-truth symmetry. As summarized in Figure 1 left, native 3D
generative models consistently outperform other approaches across all metrics.

We then systematically quantify the significance of each image cue. Building on meaningful pertur-
bations [12], we disable or modify specific cues, such as silhouette shape, shading, texture semantics,
perspective, and local continuity, and measure the resulting degradation in 3D output quality. Our
perturbation analysis uncovers how modern single-image 3D models leverage image cues, revealing
the following key insights. (1) Meaningfulness of shape, not texture, dictates generalization. For
models to generalize, the input image must indicate a meaningful shape that does not significantly
deviate from the training distribution. When we disrupt this cue by providing the models with
a stochastic combination of textured primitive shapes [53], every method collapses with distinct
failure modes. In contrast, the models perform surprisingly well on meaningless or random textures,
with the best-performing models showing near perfect generalization. (2) Semantics alone are not
enough; Geometric cues are crucial. Using a state-of-the-art style-transfer method [54], we convert
images into artistic styles that preserve high-level semantics but often disrupts geometric cues like
realistic shading and texture, as shown in Figure 2. We observe a significant drop on the performance
compared to the original images, underscoring the continued importance of geometric cues. (3)
Shading is more important than texture. To dissect the contribution of different geometric cues, we
dive deeper into the image formation process. Surprisingly, even when all recognizable textures are
replaced by procedural noise, natural patterns, or flat gray, for several methods, the quality of the 3D
outputs remain almost unchanged, as long as the shading is kept intact. However, removing shading
causes a noticeable performance decline. We further discover an interplay between shading and
texture cues: intact shading alone suffices to uphold performance regardless of texture content, but
when shading is removed, preserving the original texture yields better results than substituting with
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Figure 2: Overview of perturbations for analyzing individual image cues in single-image 3D genera-
tion. Starting from the original image, we systematically perturb specific visual cues. These targeted
perturbations reveal the extent to which each cue influences model performance.

procedural textures or uniform color. (4) Models are overly sensitive to silhouette and occlusion.
Dilating the object mask (without altering interior pixels) inflicts severe errors on regression-based
and multi-view methods, whereas one native 3D generator remains relatively robust. In contrast,
occlusion of both silhouette and image content dramatically degrades all approaches. (5) Other cues
have diverse impact. Perturbing perspective, edge, and local-continuity signals produce measurable
performance drops that vary across model categories, which we provide thorough analysis in the
experiments section.

Cue3D establishes the first unified, model-agnostic framework for dissecting how modern
single-image 3D generators exploit individual visual cues. Our perturbation study reveals that
shape, rather than texture, meaningfulness dictates generalization. Geometric cues, especially shad-
ing, contribute significantly the 3D generation process. These models may overly rely on the provided
silhouette. Meanwhile, edges, perspective, and local continuity each have distinct effects on different
model families. By quantifying these dependencies across state-of-the-art approaches, Cue3D deep-
ens our scientific understanding of image-based 3D generation, and provides potential guidance for
designing more transparent, robust, and controllable single-image 3D generation methods.

2 Related Work

Single-Image to 3D. Recent advances in single-image-to-3D generation have converged on three
principal paradigms. (1) Regression-based methods [6, 18, 20, 48, 50] employ neural networks to
directly predict a 3D representation, such as voxels, deformed meshes, or implicit fields, from encoded
image features in a single forward pass. For example, LRM [18] and its successors [6, 48] utilize
transformer backbones to learn triplane representations, which are then rendered volumetrically,
achieving both high fidelity and efficient inference. (2) Multi-view approaches [2, 35, 42, 45, 51, 55]
follow a two-stage pipeline: first synthesizing multi-view RGB images [35], depth or coordinate
maps [32, 51], normal maps [34, 36], or Gaussian splats [45], and then reconstructing 3D structure
from these intermediate multi-view representations. Decoupling view synthesis from geometry
enables the reuse of powerful 2D generative priors trained on billions of images [40], providing
an especially strong texture prior. (3) Native 3D generative models [23, 28, 29, 49, 52, 56, 58]
combine a VAE-based latent encoding of 3D data [24, 26] with a diffusion or flow model to generate
high-quality and diverse 3D samples. Methods differ in their latent structures, input formats, and
output representations: for instance, Hunyuan3D-2 [58] encodes point clouds to produce texture-free
signed distance fields, while Trellis [52] proposes a sparse structured latent combining geometric
and visual features, allowing flexible decoding into radiance fields, Gaussian splats, or meshes.
Despite the iterations of approaches, it remains unclear what image cues these models rely on when
producing the 3D output. In this paper, we systematically investigate how different single-image to
3D frameworks extract and transform visual signals from images cues into 3D representations.

Image Cues. Humans infer 3D structure from single images by integrating multiple monocular cues.
Studies in developmental psychology and psychophysics show that the human visual system encodes
properties like surface depth and orientation [8, 25, 43], and that internal object representations adhere
to 3D constraints [41]. In contrast to humans’ seamless cue integration, classical computer vision
approaches explicitly leverage specific visual cues for shape inference—such as shape-from-shading
[19, 21], texture gradients [22, 38], silhouettes [27, 31], contours and junctions [7], perspective effects
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Figure 3: Illustration of the three single-image 3D gener-
ation paradigms evaluated in this paper: regression-based
methods (OpenLRM [16], SF3D [6]), multi-view approaches
(CRM [51], LGM [45], InstantMesh [55]), and native 3D
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Figure 4: Qualitative comparison
on the Zeroverse dataset of shapes
without semantic meaning. We
show one methods representative
of each paradigms.

[15], and symmetry priors [4, 47]. Modern deep models instead learn these visual priors implicitly in
an end-to-end manner, inspring us to explore the role of these cues in state-of-the-art models.

Visual Cue Interpretability. Interpreting the decision-making process of black-box models, espe-
cially with respect to the visual cues they exploit, remains an open challenge. A common strategy
is input perturbation, where carefully crafted modifications are applied to input data to observe the
resulting changes in model output [12, 13, 46]. For example, Geirhos et al. [13] generate images in
which object shape and surface texture are semantically misaligned, revealing the relative importance
of each cue in image classification models. Other approaches include latent-space probing, which
trains auxiliary networks to investigate whether the internal representations of a pre-trained model
fit certain downstream tasks [5, 11], and metric-based benchmarking, where models are compared
across artificially curated datasets designed to emphasize specific visual attributes or cues [59]. Our
work is inspired by these cue-based analysis methods but differs in key ways. Rather than solely
focusing on classification or probing general features for diverse downstream tasks, we focus on
presenting an in-depth analysis within the scope of single-image 3D generation. We introduce a
model-agnostic framework that systematically applies controlled perturbations to distinct image cues
and quantifies their effect. By evaluating a range of recent 3D architectures and employing both
2D and 3D performance metrics, our approach provides a faithful and comprehensive view of how
state-of-the-art models leverage visual cues during singele-image 3D generation.

3 Cue3D

3.1 Evaluation Settings

Methods. We compare seven recent single-image-to-3D methods that collectively cover all three
prevailing paradigms. In particular, we select OpenLRM [16] and SF3D [6] from regression-based
networks, CRM [51], LGM [45] and InstantMesh [55] from multi-view reconstruction approaches,
and Trellis [52] and Hunyuan3D-2 [58] from native 3D generative methods. We use the official
implementation for all methods and evaluate mesh outputs in a unified way. We use 8 NVIDIA L40S
GPU for all our experiments.

Datasets. We select two standard evaluation datasets for all methods: GSO [10], a dataset of high-
quality scanned household items, and Toys4K[44], a collection of user-created 3D toy objects. We
manually remove geometrically trivial objects (e.g., boxes) and balancing over-represented categories
from these datasets. Our final evaluation sets contains 412 objects from the cleaned GSO dataset and
500 randomly sampled objects from the cleaned Toys4K dataset. Each object is rendered in Blender
from a random camera pose (azimuth/elevation sampled within fixed limits) under a random Poly
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Haven [1] HDRI lighting. More implementation details are in the appendix. To probe performance
on shapes without semantic meaning, we additionally use Zeroverse [53], a procedurally generated
dataset built from random assemblies of textured primitive. Zeroverse exhibits rich local geometric
detail, but the shapes themselves are not meaningful, as it significantly deviate from the training
distribution of single-image-to-3D methods.

Overall Quality. We evaluate both 2D appearance fidelity and 3D geometric quality of the 3D mesh
results. We align the output mesh to the groundtruth following [6]. For appearance fidelity, we report
PSNR, SSIM and LPIPS between rendered output meshes and groundtruth meshes. We render 16
views for each object with 8 uniform azimuth and 2 elevations. For geometry quality, we report the
Chamfer Distance (CD) and F-scores at different thresholds to quantify the overall shape quality.
The Chamfer distance between two point clouds P1 = {xi ∈ R3}ni=1 and P2 = {xj ∈ R3}mj=1. is
defined as:

chamfer(P1, P2) =
1

2n

n∑
i=1

|xi −NN(xi, P2)|+
1

2m

m∑
j=1

|xj −NN(xj , P1)| (1)

where NN(x, P ) = argminx′∈P ∥x− x′∥ denotes the nearest neighbor of source point x in point
cloud P .

Visible Surface Quality. Beyond assessing overall mesh quality, we specifically evaluate how
accurately the predicted mesh aligns with the ground truth at the input image’s viewpoint. We render
RGB images of the output meshes from this viewpoint, obtain the corresponding depth map, and
back-project the depth map into point clouds using the ground truth camera parameters. Subsequently,
we employ the previously described 2D and 3D metrics on these rendered images and point clouds to
quantitatively measure the quality of visible surfaces.

Symmetry. We further analyze the predicted object’s symmetry agreement with the ground truth.
Adopting the symmetry groundtruth generation procedure from [33], we apply a fixed threshold
to identify planes of reflection symmetry in both predicted and ground truth meshes. For each
method, we compute a binary symmetric-or-not F1 score across all predicted objects relative to their
groundtruth counterparts.

3.2 Perturbations

We assess the importance of individual image cues through targeted perturbations. By selectively
removing one cue while preserving others, significant performance degradation indicates the model’s
reliance on that cue. Conversely, minimal performance changes suggest the model’s invariance to that
cue. Additionally, preserving a single cue while removing most others can highlight its information
contribution in the model’s inference process. Below, we introduce the cues and their corresponding
perturbations examined in this paper, illustrated in Figure 2. Additional perturbation analyses are
detailed in the appendix.

Style. We perturb geometric cues while preserving semantic content through reference-based style
transfer [54]. We select six distinct styles: ink wash, line art, pointillism, flat design, oil painting, and
sculpture. We manually curate five exemplar images per style. Each object image undergoes style
transfer using a randomly selected style exemplar for each of the six styles. This approach preserves
core 3D structure perceptually while altering geometric cues like shading and texture, as shown in
Figure 2.

Shading & Texture. Given their prominence as geometric cues, we jointly analyze shading and
texture perturbations within the rendering pipeline. We perturb shading by rendering diffuse maps
in Blender. Specifically, since the groundtruth texture in the GSO dataset has baked-in lighting, we
employ an image delighting method [58] to remove baked-in lighting for the GSO dataset. Texture
perturbations involve swapping original textures with alternatives such as uniform checkerboards,
Perlin noise, random textures from Poly Haven [1], and uniform gray. Each texture variant is rendered
both with and without lighting (diffuse).

Silhouette and Occlusion. Silhouette captures global shape information, and many models explicitly
takes object mask as input. We investigate its influence through mask dilation and occlusion. We
first dilate the silhouette (alpha mask) of each object by a fixed pixel width, leaving other cues intact.
Subsequently, we simulate occlusion by placing scaled masks of randomly selected objects from the
dataset onto the original mask boundaries, creating weak, medium, and strong occlusion conditions.
Though occlusion partially hides image content, humans typically can still mentally reconstruct the
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(a) GSO
Method Overall 2D Overall 3D Symmetry Visible Surface 2D Visible Surface 3D

PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑ FS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑
LGM 16.20 0.807 0.291 83.01 0.034 0.188 16.83 0.819 0.256 46.00 0.215
OpenLRM 17.09 0.820 0.245 80.89 0.033 0.391 17.48 0.824 0.218 33.00 0.297
CRM 17.68 0.833 0.232 68.07 0.043 0.285 18.49 0.845 0.193 31.10 0.298
SF3D 16.71 0.838 0.219 61.58 0.059 0.488 17.27 0.839 0.187 25.70 0.411
InstantMesh 19.01 0.849 0.192 54.54 0.072 0.715 19.21 0.853 0.168 24.00 0.424
Hunyuan3D-2 19.98 0.862 0.159 41.82 0.087 0.894 20.08 0.863 0.143 19.10 0.497
Trellis 19.85 0.864 0.157 39.64 0.092 0.867 19.95 0.867 0.141 19.80 0.472

(b) Toys4K
Method Overall 2D Overall 3D Symmetry Visible Surface 2D Visible Surface 3D

PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑ FS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑
LGM 16.76 0.833 0.272 77.01 0.051 0.270 17.42 0.843 0.243 41.50 0.259
OpenLRM 17.85 0.853 0.221 74.79 0.047 0.419 18.51 0.859 0.192 28.00 0.351
CRM 18.21 0.860 0.214 61.88 0.064 0.321 19.45 0.875 0.170 25.20 0.370
SF3D 18.01 0.875 0.186 52.78 0.094 0.600 18.69 0.876 0.162 21.00 0.512
InstantMesh 19.59 0.876 0.173 49.84 0.098 0.706 20.06 0.883 0.149 20.60 0.489
Hunyuan3D-2 20.79 0.893 0.138 38.65 0.126 0.913 21.08 0.897 0.124 14.90 0.590
Trellis 20.53 0.893 0.136 37.78 0.137 0.904 20.85 0.898 0.122 16.00 0.563

Table 1: Unified evaluation results on the GSO and Toys4K datasets. Native 3D generative models
achieve the highest overall performance across metrics.

Method Overall 2D Overall 3D Symmetry Visible Surface 2D Visible Surface 3D

PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑ FS ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD×1000 ↓ FS ↑
LGM 16.15 0.754 0.321 86.19 0.019 0.000 16.98 0.767 0.289 54.50 0.134
OpenLRM 16.86 0.761 0.283 96.59 0.019 0.200 17.34 0.761 0.252 45.20 0.193
CRM 17.17 0.771 0.280 81.45 0.021 0.000 18.65 0.791 0.223 40.40 0.200
SF3D 15.11 0.767 0.276 90.34 0.021 0.267 15.83 0.768 0.231 38.60 0.249
InstantMesh 16.89 0.752 0.304 89.47 0.021 0.467 17.68 0.769 0.263 46.80 0.185
Hunyuan3D-2 17.63 0.770 0.258 78.09 0.024 0.933 18.18 0.777 0.233 35.50 0.239
Trellis 17.29 0.773 0.264 78.14 0.024 0.467 17.75 0.781 0.248 43.20 0.181

Table 2: Evaluation results on the Zeroverse dataset of shapes without semantic meaning. Perfor-
mance significantly drops compared to GSO and Toys4K, underscoring the significance of shape
meaningfulness.

complete 3D shape by leveraging shape priors. These variants test the model’s capability to infer
complete 3D structures despite partial visibility. Additional perturbation scenarios to the silhouette
are presented in the appendix.

Edges. Edges are analyzed due to their role in separating surfaces and indicating curvature. We first
extract edge maps using the Canny algorithm from input images. Two perturbation strategies are used:
one replaces all internal object cues (except silhouette) with edge maps alone, evaluating if edges can
sufficiently provide information for shape inference. The other softens edges by applying Gaussian
blurring only in the local neighborhood of detected edges, merging adjacent surface regions visually.
Significant performance drops under these perturbations would highlight the model’s reliance on
precise edge information, while negligible drop would indicate invariance. Additional edge extraction
methods and results are included in the appendix.

Perspective. Perspective cue could indicate vanishing points and spatial relationships. This cue is
perturbed by switching the rendering camera to an orthographic projection. Eliminating perspective
effects enables evaluation of the model’s dependence on perspective cues.

Local Continuity. To assess sensitivity to local structural details, we perturb local continuity by
splitting image foreground into grids of n × n pixels and shuffling pixels within each grid cell
independently. This maintains global structure while disrupting local detail continuity. Greater
performance degradation under this perturbation reflects higher sensitivity to local information.

4 Results

4.1 Unified Evaluation

We begin by conducting a unified evaluation of all seven methods on the GSO and Toys4K datasets.
We present the summary of the results in Figure 1 (left), and the full evaluation details in Table 1.
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(a) GSO
Cue Variant LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Baseline Original 83.01 80.89 68.07 61.58 54.54 41.82 39.64

Ink Wash 89.75 (↑6.74) 83.21 (↑2.32) 73.66 (↑5.59) 82.72 (↑21.14) 73.80 (↑19.26) 57.34 (↑15.52) 53.31 (↑13.67)
Flat Design 86.66 (↑3.65) 83.25 (↑2.36) 73.46 (↑5.39) 74.09 (↑12.51) 60.68 (↑6.14) 53.30 (↑11.48) 48.87 (↑9.23)
Line Art 88.21 (↑5.20) 83.46 (↑2.57) 77.49 (↑9.42) 81.94 (↑20.36) 80.90 (↑26.36) 55.27 (↑13.45) 51.79 (↑12.15)
Oil Painting 89.66 (↑6.65) 83.88 (↑2.99) 73.19 (↑5.12) 82.28 (↑20.70) 60.77 (↑6.23) 58.01 (↑16.19) 56.49 (↑16.85)
Pointillism 89.00 (↑5.99) 81.26 (↑0.37) 73.35 (↑5.28) 84.14 (↑22.56) 62.44 (↑7.90) 56.26 (↑14.44) 54.08 (↑14.44)

Geometric
Cues (Style)

Sculpture 85.70 (↑2.69) 83.76 (↑2.87) 69.99 (↑1.92) 74.54 (↑12.96) 58.27 (↑3.73) 53.35 (↑11.53) 48.99 (↑9.35)

Original (w/o L) 86.97 (↑3.96) 84.38 (↑3.49) 73.08 (↑5.01) 79.64 (↑18.06) 58.02 (↑3.48) 47.22 (↑5.40) 48.51 (↑8.87)
Checkerboard (w/o L) 95.17 (↑12.16) 90.71 (↑9.82) 85.71 (↑17.64) 68.20 (↑6.62) 62.55 (↑8.01) 47.00 (↑5.18) 49.33 (↑9.69)
Checkerboard (w/ L) 93.21 (↑10.20) 88.15 (↑7.26) 79.84 (↑11.77) 61.19 (↓0.39) 61.16 (↑6.62) 42.06 (↑0.24) 40.78 (↑1.14)
Perlin Noise (w/o L) 96.86 (↑13.85) 84.86 (↑3.97) 79.01 (↑10.94) 72.97 (↑11.39) 60.57 (↑6.03) 46.70 (↑4.88) 46.06 (↑6.42)
Perlin Noise (w/ L) 91.86 (↑8.85) 82.72 (↑1.83) 70.40 (↑2.33) 61.62 (↑0.04) 56.16 (↑1.62) 43.06 (↑1.24) 39.91 (↑0.27)
Haven (w/o L) 93.76 (↑10.75) 83.65 (↑2.76) 82.96 (↑14.89) 95.15 (↑33.57) 67.09 (↑12.55) 53.73 (↑11.91) 57.51 (↑17.87)
Haven (w/ L) 86.01 (↑3.00) 80.94 (↑0.05) 69.02 (↑0.95) 63.11 (↑1.53) 57.57 (↑3.03) 43.62 (↑1.80) 40.97 (↑1.33)
Gray (w/o L) 109.70 (↑26.69) 104.22 (↑23.33) 96.26 (↑28.19) 99.38 (↑37.80) 70.63 (↑16.09) 72.12 (↑30.30) 72.04 (↑32.40)

Shading
& Texture

Gray (w/ L) 92.16 (↑9.15) 84.67 (↑3.78) 73.46 (↑5.39) 61.13 (↓0.45) 54.52 (↓0.02) 42.05 (↑0.23) 41.11 (↑1.47)

Dilated (Weak) 90.84 (↑7.83) 85.94 (↑5.05) 71.36 (↑3.29) 72.34 (↑10.76) 60.35 (↑5.81) 43.67 (↑1.85) 42.58 (↑2.94)
Dilated (Medium) 95.90 (↑12.89) 96.42 (↑15.53) 77.47 (↑9.40) 80.51 (↑18.93) 69.92 (↑15.38) 44.92 (↑3.10) 43.43 (↑3.79)Silhouette
Dilated (Strong) 104.84 (↑21.83) 116.11 (↑35.22) 82.63 (↑14.56) 92.20 (↑30.62) 78.31 (↑23.77) 49.92 (↑8.10) 42.48 (↑2.84)

Occluded (Weak) 87.13 (↑4.12) 79.54 (↓1.35) 69.25 (↑1.18) 62.23 (↑0.65) 59.22 (↑4.68) 43.51 (↑1.69) 47.67 (↑8.03)
Occluded (Medium) 93.97 (↑10.96) 83.83 (↑2.94) 77.53 (↑9.46) 73.70 (↑12.12) 73.57 (↑19.03) 50.23 (↑8.41) 57.09 (↑17.45)Occlusion
Occluded (Strong) 104.10 (↑21.09) 94.30 (↑13.41) 90.01 (↑21.94) 86.95 (↑25.37) 87.13 (↑32.59) 57.86 (↑16.04) 63.13 (↑23.49)

Edges Only 92.70 (↑9.69) 82.36 (↑1.47) 84.74 (↑16.67) 88.48 (↑26.90) 67.47 (↑12.93) 51.56 (↑9.74) 56.64 (↑17.00)Edges Soften Edges 86.58 (↑3.57) 81.84 (↑0.95) 69.47 (↑1.40) 64.63 (↑3.05) 56.54 (↑2.00) 42.76 (↑0.94) 42.87 (↑3.23)

Perspective Orthographic 88.12 (↑5.11) 87.70 (↑6.81) 66.25 (↓1.82) 69.83 (↑8.25) 59.30 (↑4.76) 48.24 (↑6.42) 43.26 (↑3.62)

Pixel Shuffle (2) 85.50 (↑2.49) 80.97 (↑0.08) 68.21 (↑0.14) 64.62 (↑3.04) 55.27 (↑0.73) 41.12 (↓0.70) 42.87 (↑3.23)
Pixel Shuffle (4) 84.43 (↑1.42) 80.34 (↓0.55) 69.98 (↑1.91) 72.90 (↑11.32) 57.85 (↑3.31) 42.94 (↑1.12) 47.47 (↑7.83)
Pixel Shuffle (10) 91.25 (↑8.24) 84.42 (↑3.53) 80.53 (↑12.46) 99.10 (↑37.52) 67.17 (↑12.63) 51.54 (↑9.72) 61.13 (↑21.49)

Local
continuity

Pixel Shuffle (20) 98.63 (↑15.62) 87.71 (↑6.82) 94.53 (↑26.46) 107.32 (↑45.74) 78.88 (↑24.34) 72.68 (↑30.86) 89.44 (↑49.80)

(b) Toys4K
Cue Variant LGM OpenLRM CRM SF3D InstantMesh Hunyuan3D-2 Trellis

Baseline Original 77.01 74.79 61.88 52.78 49.84 38.65 37.78

Ink Wash 79.02 (↑2.01) 77.36 (↑2.57) 68.30 (↑6.42) 83.03 (↑30.25) 80.04 (↑30.20) 56.95 (↑18.30) 50.20 (↑12.42)
Flat Design 78.25 (↑1.24) 74.64 (↓0.15) 66.66 (↑4.78) 69.30 (↑16.52) 55.19 (↑5.35) 52.18 (↑13.53) 43.76 (↑5.98)
Line Art 81.51 (↑4.50) 77.25 (↑2.46) 70.26 (↑8.38) 74.96 (↑22.18) 87.29 (↑37.45) 53.07 (↑14.42) 48.04 (↑10.26)
Oil Painting 80.49 (↑3.48) 77.26 (↑2.47) 68.98 (↑7.10) 74.31 (↑21.53) 60.59 (↑10.75) 55.13 (↑16.48) 52.60 (↑14.82)
Pointillism 78.65 (↑1.64) 75.09 (↑0.30) 67.73 (↑5.85) 76.72 (↑23.94) 60.01 (↑10.17) 54.67 (↑16.02) 51.05 (↑13.27)

Geometric
Cues (Style)

Sculpture 77.90 (↑0.89) 75.58 (↑0.79) 65.87 (↑3.99) 69.98 (↑17.20) 56.06 (↑6.22) 52.82 (↑14.17) 47.70 (↑9.92)

Original (w/o L) 82.86 (↑5.85) 77.98 (↑3.19) 71.80 (↑9.92) 67.89 (↑15.11) 54.44 (↑4.60) 44.81 (↑6.16) 46.94 (↑9.16)
Checkerboard (w/o L) 89.95 (↑12.94) 82.18 (↑7.39) 78.85 (↑16.97) 76.94 (↑24.16) 58.60 (↑8.76) 48.26 (↑9.61) 49.89 (↑12.11)
Checkerboard (w/ L) 78.98 (↑1.97) 77.30 (↑2.51) 65.68 (↑3.80) 53.46 (↑0.68) 52.03 (↑2.19) 39.06 (↑0.41) 39.19 (↑1.41)
Perlin Noise (w/o L) 86.04 (↑9.03) 78.61 (↑3.82) 76.49 (↑14.61) 71.67 (↑18.89) 56.61 (↑6.77) 46.85 (↑8.20) 46.48 (↑8.70)
Perlin Noise (w/ L) 78.14 (↑1.13) 74.94 (↑0.15) 61.19 (↓0.69) 52.43 (↓0.35) 49.16 (↓0.68) 38.79 (↑0.14) 37.11 (↓0.67)
Haven (w/o L) 83.03 (↑6.02) 79.42 (↑4.63) 78.24 (↑16.36) 90.11 (↑37.33) 57.35 (↑7.51) 48.10 (↑9.45) 49.80 (↑12.02)
Haven (w/ L) 77.90 (↑0.89) 74.67 (↓0.12) 61.76 (↓0.12) 53.56 (↑0.78) 50.77 (↑0.93) 39.09 (↑0.44) 37.81 (↑0.03)
Gray (w/o L) 96.32 (↑19.31) 88.22 (↑13.43) 83.56 (↑21.68) 87.37 (↑34.59) 59.73 (↑9.89) 58.12 (↑19.47) 58.62 (↑20.84)

Shading
& Texture

Gray (w/ L) 81.35 (↑4.34) 76.62 (↑1.83) 62.96 (↑1.08) 53.55 (↑0.77) 47.54 (↓2.30) 38.28 (↓0.37) 38.56 (↑0.78)

Dilated (Weak) 81.26 (↑4.25) 80.48 (↑5.69) 67.82 (↑5.94) 65.25 (↑12.47) 54.41 (↑4.57) 41.94 (↑3.29) 38.89 (↑1.11)
Dilated (Medium) 95.79 (↑18.78) 94.80 (↑20.01) 82.32 (↑20.44) 75.15 (↑22.37) 66.09 (↑16.25) 44.17 (↑5.52) 38.87 (↑1.09)Silhouette
Dilated (Strong) 111.42 (↑34.41) 123.99 (↑49.20) 89.36 (↑27.48) 90.88 (↑38.10) 75.48 (↑25.64) 50.30 (↑11.65) 39.88 (↑2.10)

Occluded (Weak) 80.63 (↑3.62) 73.98 (↓0.81) 64.87 (↑2.99) 58.46 (↑5.68) 57.06 (↑7.22) 41.74 (↑3.09) 45.31 (↑7.53)
Occluded (Medium) 91.94 (↑14.93) 78.18 (↑3.39) 72.69 (↑10.81) 68.14 (↑15.36) 68.08 (↑18.24) 48.09 (↑9.44) 52.54 (↑14.76)Occlusion
Occluded (Strong) 100.64 (↑23.63) 90.62 (↑15.83) 82.41 (↑20.53) 84.17 (↑31.39) 80.83 (↑30.99) 52.84 (↑14.19) 59.51 (↑21.73)

Edges Only 85.50 (↑8.49) 75.63 (↑0.84) 75.83 (↑13.95) 78.51 (↑25.73) 62.68 (↑12.84) 44.74 (↑6.09) 50.31 (↑12.53)Edges Soften Edges 80.98 (↑3.97) 74.33 (↓0.46) 63.37 (↑1.49) 57.10 (↑4.32) 49.70 (↓0.14) 38.77 (↑0.12) 38.86 (↑1.08)

Perspective Orthographic 78.91 (↑1.90) 79.56 (↑4.77) 60.31 (↓1.57) 60.83 (↑8.05) 52.06 (↑2.22) 44.24 (↑5.59) 39.84 (↑2.06)

Pixel Shuffle (2) 76.69 (↓0.32) 74.45 (↓0.34) 61.44 (↓0.44) 54.67 (↑1.89) 50.58 (↑0.74) 37.59 (↓1.06) 40.04 (↑2.26)
Pixel Shuffle (4) 77.77 (↑0.76) 73.28 (↓1.51) 61.60 (↓0.28) 63.64 (↑10.86) 52.86 (↑3.02) 37.96 (↓0.69) 41.99 (↑4.21)
Pixel Shuffle (10) 84.86 (↑7.85) 74.58 (↓0.21) 70.24 (↑8.36) 86.01 (↑33.23) 61.05 (↑11.21) 44.90 (↑6.25) 51.69 (↑13.91)

Local
continuity

Pixel Shuffle (20) 87.33 (↑10.32) 79.15 (↑4.36) 84.66 (↑22.78) 96.24 (↑43.46) 67.80 (↑17.96) 57.11 (↑18.46) 67.18 (↑29.40)

Table 3: Quantitative analysis of image cue perturbations on single-image 3D generation. We report
Chamfer Distance (CD ×1000 for clarity; lower is better) for each model under different perturbations.
A larger increase in CD indicates greater performance degradation, revealing the model’s reliance on
the perturbed cue.

Our results show that the native 3D generative methods, see Hunyuan3D-2 and Trellis in Table 1,
clearly outperform other methods across both datasets. Generally, these two methods are closely
followed by InstantMesh, the best-performing multi-view method, and SF3D, the leading regression-
based method, followed by the remaining methods.

Regarding 2D appearance quality, as shown in Table 1 Overall 2D and Visible Surface 2D columns,
native 3D generative methods have only marginal improvements in terms of PSNR and SSIM
compared to other methods. However, they substantially outperform the alternatives in terms of
LPIPS scores. This suggests that, although pixel-level statistics appear similar across methods, the
native 3D generative methods more accurately capture higher-level visual information encoded by
deep features.
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Figure 5: Qualitative example of our image cue perturbation analysis. More qualitative results are
available in the Appendix.

The most substantial advantage of native 3D generative methods emerges in their 3D geometry quality,
see Table 1 Overall 3D and Visible Surface 3D columns. These methods exceed the next-best method
by over 10 points in overall geometry evaluation and by more than 4 points on visible surfaces under
our CD×1000 metric. The visible surface quality assessments closely align with the overall geometry
evaluations. Additionally, native 3D generative methods excel significantly in modeling symmetry,
see Table 1 Symmetry column. They closely match the ground-truth symmetry across both datasets.

Comparing the two top methods, Hunyuan3D-2 and Trellis achieve similar 2D quality despite
differences in their texture modeling approaches. Trellis demonstrates slightly better overall 3D
quality, whereas Hunyuan3D-2 slightly excels in symmetry and visible surface quality. These
insights provide valuable guidance for selecting the most appropriate method for practical, real-world
applications.

4.2 Image Cues Analysis

In this section, we quantitatively analyze the role of various image cues in single-image 3D generation.
An overview of our key findings is illustrated in Figure 1 (right). Detailed results are presented
in Table 3. Performances in this table are measured by Chamfer Distance (CD, scaled ×1000 for
clarity), where lower values indicate better performance, thus a larger increase represents significantly
degraded performance. We show a qualitative example in Figure 5. More qualitative results are
available in the Appendix.

Shape Meaningfulness. We assess the impact of shape meaningfulness using a dataset comprising
procedurally generated combinations of textured primitive shapes [53]. We show qualitative results
of representative methods in Figure 4, and the quantitative evaluations in Table 2. Figure 4 shows that
the input image does not correspond to a meaningful shape, and has a significant gap to the training
distribution. Performance notably declines across both 2D and 3D metrics compared to the more
meaningful GSO and Toys4K datasets, confirming that meaningful shape in the input images are
critical for the generalization of single-image 3D generation. Native 3D generative methods generally
maintain the highest overall quality, while CRM best recovers visible surfaces in 2D, and SF3D and
Hunyuan3D-2 perform best in visible surface 3D quality.

We further examine how the absence of shape meaningfulness influences different failure modes
qualitatively in Figure 4 and quantitatively in the Appendix. Regression-based methods produce
smooth, averaged back surfaces. We quantify this phenomenon by measuring the difference between
each normal and the average normal in its local neighborhood, normalized against the ground
truth, and we see a substantial drop of this metric on Zeroverse. Multi-view methods fail due to
inconsistencies in synthesized views, as evidenced by decreased pairwise DINOv2 similarity scores,
contributing to degraded 3D performance. Native 3D generative methods, lacking meaningful shape
information, tend to hallucinate symmetrical completions, resulting in higher false-positive symmetry
detections. See appendix for the detailed results of these experiments. These diverse failure modes
underline the crucial role of meaningful shape cues, particularly for reconstructing occluded surfaces.

Geometric Cues (Style). To explore geometric cues broadly, we apply style transfer to preserve
semantics while altering geometric cues (Figure 2). Table 3 summarizes the results on GSO and
Toys4K. Performance significantly deteriorates under style perturbations. Sculpture-style images
retain the most geometric information, thus yielding the smallest performance drops in general. Note
that lower-performing methods show less degradation not because of their robustness, but due to
metric saturation. Overall, semantics alone are insufficient; geometric cues are essential for reliable
3D inference.
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Shading and Texture. We dissect geometric cues further by separately manipulating shading and
texture, which are historically established cues for shape inference. Table 3 presents evaluations across
five texture conditions: original, checkerboard, Perlin noise, random Poly Haven texture [1], and
solid gray, each tested with lighting (w/ L) and without lighting (w/o L). Surprisingly, altering texture
while preserving shading minimally impacts performance for leading methods (SF3D, Hunyuan3D-2,
Trellis). Multi-view approaches show slightly more sensitivity to texture changes but remain relatively
robust overall. However, removing shading consistently decreases performance across methods,
underscoring shading’s significant role. Interestingly, there is an interplay between shading and
texture cue: meaningful texture mitigates this drop due to removing lighting to some degree, especially
on Toys4K. These results highlight that texture meaningfulness is not a necessary cue for generalizion.
Meanwhile, shading is generally more influential than texture, with several top-performing methods
exhibiting near texture invariance provided shading cues remain accurate.

Silhouette and Occlusion. Dilating object masks severely reduces performance despite unchanged
interior pixels, indicating silhouette cues’ importance. Trellis remains comparatively stable, sug-
gesting a level of learned silhouette invariance. Occluding both silhouette and content dramatically
reduces performance universally. This shows the combined importance of silhouette and interior
visual cues.

Edges. We probe the role of edges cue in two ways, leaving only edges on silhouette and softening
edges with localized gaussian filter. Edge-only input significantly degrade performance for most
models except OpenLRM, suggesting edges alone may not provide sufficient shape information.
Softening edges yields minor performance reductions, confirming edges are supportive but not
primary cues.

Perspective. Switching from perspective to orthographic projection notably reduces performance,
particularly for regression-based methods (OpenLRM, SF3D), indicating their reliance on perspective
cues. CRM remains unaffected, since it uses orthographic images in training. Hunyuan3D-2 is more
sensitive than Trellis, potentially due to its latent representation capturing perspective.

Local Continuity. Local cue scrambling significantly impacts regression-based SF3D, while other
methods show varied but less severe sensitivity. Hunyuan3D-2 demonstrates the greatest robustness.
However, all methods degrade substantially under extensive local scrambling, emphasizing the
general importance of local continuity.

5 Discussions and Conclusion

Discussions. Our study reveals several crucial implications for future development of single-image
3D generation models. First, we find that current models do not solely rely on geometric reasoning,
but are highly dependent on shape meaningfulness. Semantic familiar images enables reliable
reconstruction, while unfamiliar, procedurally generated shapes lead to failure. This underscores the
importance of broad training set coverage and motivates more diverse data in pretraining. Second,
our findings reveal a practical challenge in handling stylized images: although the underlying object
semantics are preserved, the distortion or loss of geometric cues, such as realistic shading, leads
to a significant drop in reconstruction performance. This suggests a promising research direction:
developing techniques to restore or synthesize plausible geometric cues in stylized images, thereby
improving the fidelity of 3D generation from such inputs. Third, since shading emerges as a crucial
cue, more diverse, higher quality lighting and shading could largely benefit the generalization ability
of current models. Fourth, the models exhibit over-reliance on provided silhouettes, since dilations
and occlusions lead to notable degradation, whereas in most real-world applications mask inaccuracies
and occlusions are prelavent. This necessitates more research on incorporating mechanisms to infer
or complete occluded silhouettes rather than depending completely on mask fidelity. Lastly, we
observe that handling different projection models (perspective vs. orthographic) affects robustness.
Designing architectures or training strategies that are adaptable to camera projection variations will
further enhance generalization and reliability.

Conclusion. We introduce Cue3D, a model-agnostic framework for quantifying the influence of
individual image cues in single-image 3D generation. We benchmark seven state-of-the-art methods
across three major paradigms and two datasets in a unified approach. Then we apply targeted
perturbations to individual cues like shading, texture, silhouette, occlusion, perspective, edges, and
local continuity. We reveal that shape meaningfulness is crucial to the generalization of single-image
3D generation, while texture meaningfulness is not a necessary condition. Geometric cues are crucial,
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especially shading. Our analysis further shows that the models might be overly relying on silhouette
cues, while perspective, edge, and local continuity cues affect reconstruction to varying degrees. We
hope Cue3D and the insights presented here will deepen our understanding of how deep 3D networks
leverage classical vision cues, and inspire future work on cue-aware architectures, robust training,
and diagnostic perturbation tests for more transparent and controllable single-image 3D generation.
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