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Figure 1. We study the emergence of 3D in video foundation models by probing their features with 3D reconstruction tasks. Our study
reveals state-of-the-art video generators develop strong 3D understanding even compared to 3D experts, despite only trained on 2D data.

Abstract

Videos are continuous 2D projections of 3D worlds. After
training on large video data, will global 3D understanding
naturally emerge? We study this by quantifying the 3D un-
derstanding of existing Video Foundation Models (VidFMs)
pretrained on vast video data. We propose the first model-
agnostic framework that measures the 3D awareness of
various VidFMs by estimating multiple 3D properties from
their features via shallow read-outs. Our study presents
meaningful findings regarding the 3D awareness of VidFMs
on multiple axes. In particular, we show that state-of-the-
art video generation models exhibit a strong understand-
ing of 3D objects and scenes, despite not being trained on
any 3D data. Such understanding can even surpass that
of large expert models specifically trained for 3D tasks.
Our findings, together with the 3D benchmarking of major
VidFMs, provide valuable observations for building scal-
able 3D models.

*Both authors contributed equally to this work.

1. Introduction

Recovering 3D structure from 2D visual observations is a
long-standing research problem in computer vision, with
broad applications in AR/VR and embodied AI. Despite sig-
nificant progress, the availability of high-quality 3D data
at scale remains the bottleneck for current data-driven ap-
proaches. This fundamentally limits the scaling of 3D foun-
dation models and makes it questionable whether we can
learn truly generalizable models primarily from 3D data.

Compared to native 3D assets, videos are much easier
to acquire at scale, with multiple large curated datasets al-
ready available [1, 4, 8, 35]. The diversity and complexity
of video data, with the fact that videos are 2D projections
of 3D worlds, lead to a promising pathway for scalable 3D
learning. Recent works study how to utilize video models
for 3D, either by adding 3D control [3, 17, 18, 44, 56] or
by producing 3D caches/estimations [15, 21, 22, 25, 29, 32,
33, 41, 47, 55, 60, 63, 64] along with the original frame
synthesis target. These works suggest that video priors are
useful for 3D, but 3D-inconsistency artifacts, the require-
ment of 3D fine-tuning, and task-specific engineering leave
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it unclear whether video data alone can induce strong 3D
awareness in a general-purpose setting. These confounds
motivate a direct, model-agnostic evaluation.

In this paper, we present the first model-agnostic frame-
work to probe the 3D awareness of video foundation mod-
els (VidFMs) pretrained on large-scale video data. We
ask whether VidFMs develop internal representations of 3D
structure and ego-motion and, if so, how strong and prac-
tically useful these representations are. We operationalize
this question along four axes: 1) Extent: how does the 3D
awareness of VidFMs compare to that of image models or
specialized 3D models? 2) Factor: Which factors impact
3D awareness? Here, we focus on the effects of tempo-
ral reasoning, 3D finetuning and model scaling. 3) Local-
ization: In which network layers, and at which timesteps
in diffusion models, is this 3D information most concen-
trated? 4) Implication: Under limited resources (3D data
and compute), can VidFM features be practically useful for
3D reconstruction tasks?

We posit that if a video model understands 3D worlds,
it should be feasible to extract accurate 3D properties using
shallow readout modules in a feedforward manner, without
any post-optimization or fine-tuning of the base model. Un-
like prior works that evaluate image models using depth and
cross-view consistency [12], or per-scene optimization with
off-the-shelf initialization [9], our proposed shallow feed-
forward readouts that estimate different 3D attributes from
VidFMs’ feature space are a more direct probe of globally
consistent 3D properties from pretrained video models.

Specifically, we extract frozen spatialtemporal features
from VidFMs, and design a probe model that predicts
3D points, camera poses and depth maps from these fea-
tures. The probe model is a shallow VGGT [51]-like trans-
former, consisting of four alternating-attention layers and
three read-out heads: two dense prediction heads for 3D
points and depth maps, and one camera head. We train the
probe model on top of various video features, including fea-
tures extracted from self-supervised video models and video
generation models of different performance and sizes. We
measure the performance of point, camera and depth recon-
struction as indicators of 3D awareness.

Our study leads to the following novel findings:
• Extent: Frontier video generation models exhibit great

understanding of 3D objects and scenes, and can be close
to or better than models trained with 3D data;

• Factor #1: Temporal reasoning is critical to the formation
of global 3D understanding;

• Factor #2: Finetuning video generation models with 3D
objectives improves 3D awareness on in-domain data, but
may hurt generalization beyond data domains;

• Factor #3: Model scaling leads to mixed impact on
3D awareness, with WAN2.1-14B performing signifi-
cantly better than WAN2.1-1.3B, while CogVideoX-5B

is slightly worse than CogVideoX-2B.
• Localization: The best layer and timestep to extract 3D-

aware features are surprisingly consistent across all tested
video diffusion models: mid-layer features with early-
but-not-first timesteps lead to the highest 3D awareness.

• Implication: We implement and train a VGGT model us-
ing frozen VidFM (WAN2.1-14B) features. On CO3Dv2
and DL3DV, it consistently outperforms the standard
DINO-based VGGT, indicating VidFM features may be
better suited for 3D reconstruction under limited 3D data.
In summary, we conduct the first systematic model-

agnostic evaluation on the 3D awareness of VidFMs and
conclude with meaningful findings across multiple axes that
the prior work has not surfaced well. Our findings are based
on a comprehensive benchmark that compares 3D aware-
ness of various video models, which can benefit the de-
velopment of VidFMs by enabling the evaluation of their
emerging 3D properties in a general-purpose way.

2. Related Works
Video foundation models (VidFMs) are deep models
trained on massive video data that achieve strong perfor-
mance across various downstream tasks. Early works in
the field employ self-supervised learning [5, 48, 52] or con-
trastive pretraining [57] paradigms to learn discriminative
representations of video inputs. More recently, with the
tremendous success of diffusion models, there is growing
interest in learning generative models that exploit large-
scale video priors. Such models achieve strong video syn-
thesis results, exemplified by Sora [7] and numerous follow-
ups [20, 26, 38, 50, 59]. While these models demonstrate
very strong pixel synthesis performance, their internal rep-
resentations are not well understood. In our work, we
present a comprehensive study to understand how much 3D
understanding these models possess.

3D from Video is a fundamental task in computer vision,
traditionally tackled via Structure from Motion (SfM) [16,
37, 43] and Multi-view Stereo (MVS) [14] techniques.
These classical methods rely on feature matching and can-
not handle challenging cases (e.g. textureless regions, repet-
itive patterns, or wide baselines) well. Recent work in-
stead turns to data-driven methods and propose strong feed-
forward models for direct 3D prediction. This wave of re-
search begins with pairwise models [27, 53] and further
extends to multi-view settings that improve accuracy and
efficiency for large scenes [46, 51, 58]. These methods
achieve better performance and robustness than classical
approaches, yet it remains challenging for them to further
scale up and to generalize to dynamic or real-world clut-
tered scenes given their reliance on annotated data.

To address this limitation, recent work considers using
video priors from large video generative models. Exist-
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Figure 2. Overview of the Probe. We extract video features using various video foundation models and keep the features frozen. We
sample four frames from the original video clip and fetch the corresponding feature maps from the video features. We train the probe by
taking these spatial features as input, and task the probe to estimate point maps, depth maps and camera poses. Our probe model consists
of a shallow transformer and three readout heads. We measure the estimation errors as the main indicators of 3D awareness.

ing work directly finetunes video generation models on 3D
data, to achieve 3D control [3, 17, 18, 56] or to simulta-
neously output 3D attributes [21, 25, 32, 33, 47, 63]. De-
spite progress, small-scale finetuned video models still ex-
hibit major artifacts of 3D inconsistency, especially on the
data distinct from the fine-tuning data. To mitigate this,
prior and concurrent works consider the usage of 1) ex-
plicit 3D memory [15, 22, 41, 55, 60]; 2) post 3D opti-
mization [10, 31, 44]; or 3) feedforward models on gen-
erations [29, 64] to enhance 3D consistency. These ef-
forts demonstrate the utility of video priors in sparse/single-
view regimes by using video generators as frame extrapola-
tors, yet the extent of 3D information already encoded in
base video models remains unclear in quantitative terms.
Answering this question requires a model-agnostic frame-
work that evaluates various models with quantitative met-
rics, which is what we pursue in this work.

Quantifying 3D awareness of visual foundation models
is an important research direction which helps the under-
standing of learned features and guides the development of
scalable 3D world models. Early work in this area studies
large image models and demonstrates the emergence of se-
mantic correspondence in the feature space [2, 19, 54, 62].
To directly quantify 3D understanding, more recent works
use 3D semantic (e.g. 3D-VQA, multi-view object recog-
nition, semantic segmentation) or coarse estimation (e.g.
relative depth) tasks to test the 3D understanding of visual
foundation models [6, 13, 28, 34, 39, 42, 61, 66]. Other
work, such as VBench [23, 24, 65] and WorldScore [11],

focuses on benchmarking video generators and evaluates
the 3D consistency of generated videos using off-the-shelf
priors. Instead of using coarse-grained or model-specific
evaluation, Probe3D [12] and Feat2GS [9] consider dense
probes to evaluate the 3D awareness of deep models and
are more relevant to our work. However, their probes tar-
get image models, and their evaluation mainly focuses on
depth/normal or multi-view consistency. In our study, we
present a comprehensive study on video models by directly
probing them with 3D attributes. We additionally show that
indirect probes such as depth and multi-view consistency
are not necessarily the best metrics to evaluate 3D aware-
ness across different families of models.

3. Approach
We probe the 3D awareness of various VidFMs in this work.
We define 3D awareness as the extent to which the under-
lying 3D structure and ego-motion can be recovered using
frozen features extracted from 2D video. Under a fixed
probe capacity and training set, stronger 3D awareness im-
plies that a shallow readout attains a lower reconstruction
error. Our method has two stages. First, we extract per-
frame spatial feature maps by running each VidFM on video
clips while keeping the VidFM parameters fixed. Second,
we train a lightweight feedforward probe on these features
to predict, for each sampled frame, (i) a dense 3D point map
that represents the 3D coordinates of visible pixels in the
coordinate system of the first frame, (ii) a dense depth map
at a consistent scale with other frames, and (iii) the camera
pose of each frame relative to the first frame; only the probe
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is optimized, not the VidFM. We primarily evaluate popu-
lar frontier video generation models [38, 47, 50, 59], and
also include a self-supervised video encoder, V-JEPA [5],
and two control models, DINOv2 [36] and Fast3R [58], to
contextualize our results.

3.1. Feature Extraction
Given a video V ∈ RTv×3×Hv×Wv , we run each VidFM
in frozen mode and extract, for every frame at t, a spatial
feature map Ft ∈ RC×Hf×Wf . For diffusion-based video
generators, we extract features similar to DIFT [45]: we
choose a denoising timestep τ , add noise, perform a single
denoising step, and read hidden activations from a specified
network layer as features. We use an empty text embed-
ding, and for image-to-video models we condition on the
first frame. The layer index and τ are treated as hyperpa-
rameters and are fixed across experiments. For V-JEPA, DI-
NOv2 and Fast3R, we run a standard forward pass and take
the last-layer spatial features, which we empirically find to
be the best-performing layer.

Different VidFMs often operate on different clip lengths.
Several models we investigate are trained on fixed small
context windows. To test them on longer videos, we split
the input video V into short chunks for these models, by
subsampling at fixed strides from beginning. We prepend
the first frame to each chunk, so all chunks share the same
first-frame reference. We also maintain a frame-to-feature
index map π(t) that records, for each raw frame at t, the
corresponding chunk and local index. At probe time, based
on the input frame indices {ti}Si=1 and π(t), we can gather
the corresponding features {Fti}Si=1 for all S input frames.

3.2. 3D Awareness Probe
Architecture. We use a shallow transformer probe with
alternating attention and three readout heads. For each
input video, we take S=4 frames: the first video frame
as the reference and three additional frames sampled with
a minimum temporal gap of 5 frames. From the corre-
sponding feature maps {Fti}4i=1, we obtain per-frame to-
kens and apply four blocks of alternating-attention on top.
Each alternating-attention block consists of a frame atten-
tion that mixes tokens within each frame and a global at-
tention that mixes tokens across frames; this mirrors the
VGGT design [51] but is much shallower. Three heads
decode 3D outputs: two DPT heads produce dense point
maps X̂ti ∈ RHv×Wv×3 (in the coordinate system of the
first frame) and depth maps D̂ti ∈ RHv×Wv , similar to
Probe3D [12] and VGGT. A camera head predicts the pose
of each frame relative to the first frame.

Loss. We train the probe with a multi-task objective simi-
lar to VGGT:

L = λpmapLpmap + λdepthLdepth + λcamLcam,

with λpmap = λdepth = λcam = 1 unless otherwise
stated. For Lpmap and Ldepth, we use confidence-weighted ℓ2
losses between predicted point/depth maps and groundtruth
point/depth maps. Note that the groundtruth scenes are nor-
malized before loss calculation to remove scale ambiguity.
For camera poses, we use a Huber loss between the pre-
dicted poses and groundtruth poses.

4. Experiments
4.1. Evaluation
Datasets. We perform experiments on CO3Dv2 [40] and
DL3DV [30]. CO3Dv2 is an object-centric dataset consist-
ing of turntable-type videos. We curate CO3Dv2 by filter-
ing out sequences with heavy truncation or portrait-oriented
videos that prevent forming border-less horizontal object-
centric crops. The filtered split contains 11k videos in total.
From each video, we sample consecutive frames as inputs to
the feature extraction pipeline and use features from the first
76 frames during training. We adopt a 9:1 train test split at
the video level and additionally create an ablation subset of
10 diverse categories (2.7k videos total) for ablation study.
On the other hand, DL3DV contains large, cluttered scenes
and is generally more challenging than CO3D. We use the
first 6k splits and a 9:1 train test split by video. For both
datasets, we run VGGT [51] to generate ground truth for ev-
ery frame: dense point maps, depth, and camera poses. For
point and depth maps, we also save the confidence maps,
which are used in our losses. Unlike probe time where we
only sample 4 frames from the video clips, we use all frames
to generate the groundtruth. This leads to much more accu-
rate annotations than the groundtruth originally provided by
the datasets.

Metrics. The main metrics to evaluate 3D awareness are
errors of point map, pose, and depth predictions. For point
maps, we first normalize each scene to remove global scale,
then align the predicted and ground-truth point clouds with
the Umeyama algorithm [49], and report the mean ℓ2 er-
ror. For depth, we report the mean ℓ2 error after the same
scene normalization. For camera pose, we compute rela-
tive pose errors over all frame pairs: rotation error eR is the
geodesic angle on SO(3), and translation error eT is the an-
gle between translation directions. Accuracy at threshold θ
is defined jointly as Pr[max(eR, eT ) ≤ θ], i.e., both rota-
tion and translation must be within θ. Following [51], we
report AUC@Θ, the area under this joint accuracy curve as
θ sweeps from 0◦ to Θ◦ (e.g., Θ ∈ {5, 30}).

VidFM Baselines. We evaluate various VidFM baselines,
including video generators and self-supervised encoders.
For generative models, WAN [50] and Open-Sora2.0 [38]
are the strongest open-weight generators we probe. We also
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CO3Dv2 DL3DV

Probed Feature Point Err(↓) Depth Err(↓) AUC@5 (↑) AUC@30 (↑) Point Err(↓) Depth Err(↓) AUC@5 (↑) AUC@30 (↑)

DINOv2 [36] 0.559 0.209 0.051 0.508 2.814 0.534 0.013 0.245
V-JEPA [5] 0.439 0.214 0.076 0.619 1.576 0.613 0.076 0.558
CogVideoX [59] 0.485 0.231 0.051 0.569 1.748 0.608 0.061 0.486
Aether [47] 0.501 0.249 0.054 0.571 1.566 0.574 0.067 0.527
Open-Sora2.0 [38] 0.391 0.196 0.096 0.643 1.306 0.445 0.115 0.607
WAN2.1-14B [50] 0.284 0.151 0.200 0.736 1.051 0.323 0.136 0.660
Fast3R [58] 0.262 0.145 0.272 0.769 1.379 0.514 0.134 0.637

Table 1. 3D awareness benchmark results on CO3Dv2 and DL3DV. We evaluate video generators, self-supervised video encoders,
3D experts, and per-frame image models. State-of-the-art video generators such as WAN2.1-14B and Open-Sora2.0 exhibit strong 3D
awareness and outperform Fast3R on scenes. Point map errors have been multiplied by 10 for clarity.

DINOv2 V-JEPA Aether

Open-Sora2.0 WAN2.1-14B GroundTruth

CogVideoX

Fast3RInput

DINOv2 V-JEPA Aether

Open-Sora2.0 WAN2.1-14B GroundTruth

CogVideoX

Fast3RInput

Figure 3. CO3Dv2 qualitative results. For each scene, we show input frames and the unprojected 3D points prediction. Fast3R, WAN2.1-
14B, and Open-Sora2.0 best preserve intricate details (e.g., the truck’s gripper) and reconstruct the overall structure.

probe CogVideoX [59], an earlier work than WAN/Open-
Sora2.0, and Aether [47], which fine-tunes CogVideoX with
3D-aware objectives. All generative models here are la-
tent diffusion models, which consist of a VAE that maps

between raw videos and latents, and a denoiser that de-
noises the latents. For self-supervised models, we evaluate
V-JEPA [5], a large self-supervised video encoder.
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Figure 4. DL3DV qualitative results. On this more challenging dataset, DINOv2 sometimes fails catastrophically. Top video generators
often retain coherent geometry, where WAN2.1-14B produces the sharpest and most accurate point clouds overall.

Control groups. A potential risk in our probe is that some
3D properties can already be estimated from raw videos.
While relative rankings among VidFMs are still informa-
tive, if their probe performance is on par with direct 3D
estimation from image features, the practical meaning of
such rankings is compromised. To contextualize the results,
we include two control baselines. Per-frame Image control:
we probe DINOv2 features extracted from each frame of
the video. Since the features are extracted in isolation, any
global 3D understanding of the video (e.g. 3D points in a
common coordinate frame) must be induced by the probe
rather than supplied by the backbone itself. To make the
task well-posed, we append a reference-frame indicator to-
ken that marks the first frame; all losses, schedules, and
hyperparameters mirror the VidFM setting. Native 3D con-
trol: we probe features from Fast3R [58], a state-of-the-
art model trained directly to predict 3D point maps from
multi-view images. Because this model is optimized for the
same target as our probe, probing it under the same probe
architecture and supervision provides a strong reference.

Meanwhile, CO3D is part of Fast3R’s training sets but not
DL3DV; this allows us to study the generalization behavior
of its features. Together, the per-frame control (lower refer-
ence) and native-3D control (upper reference) contextualize
VidFM results and ground our conclusions.

4.2. 3D Awareness Benchmark
We now present and analyze our results along the four axes
defined earlier. We additionally analyze the relationship be-
tween our direct 3D probe and the multi-view evaluation
from prior works in the supplementary material.

Extent: how does the 3D awareness of VidFMs com-
pare to that of image models or specialized 3D models?
Strong video diffusion models exhibit great 3D awareness
even compared to 3D experts. On CO3Dv2, WAN2.1-14B
is second only to Fast3R across all metrics (e.g., Point
0.284 vs. 0.262, Depth 0.151 vs. 0.145, AUC@30 0.736
vs. 0.769, Table 1 (left)). On DL3DV, which lies out-
side Fast3R’s training distribution, WAN2.1-14B surpasses
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(a) WAN2.1 (b) Open-Sora2.0 (c) CogVideoX

Figure 5. Layer–timestep ablations. We show point-map error (lower is better) on the ablation data when probing different diffusion
layers and denoising time steps. Best results are consistently from mid layers and early-but-not-first time steps.

Fast3R on all metrics (Point 1.051 vs. 1.379, Depth 0.323
vs. 0.514, AUC@30 0.660 vs. 0.637, Table 1 (right)). Open-
Sora2.0 is consistently strong as well, supporting the obser-
vation that state-of-the-art video generators yield features
with universally strong 3D awareness across data domains.

Factor #1: how does temporal reasoning impact 3D
awareness? Effective temporal reasoning is critical to
global 3D understanding. Per-frame DINOv2 attains com-
petitive depth on CO3Dv2 (0.209) but is significantly worse
on global 3D understanding (Point 0.559, AUC@30 0.508)
than all video models, including the self-supervised V-JEPA
(Point 0.439, AUC@30 0.619). The key difference between
image and video models is that the latter allows information
exchange along the time axis. This gap in global 3D esti-
mation widens on DL3DV (DINOv2 Point 2.814, AUC@30
0.245 vs. V-JEPA Point 1.576, AUC@30 0.558), whereas
the depth estimation of DINOv2 remains competitive. The
radar plots in Figure 1 mirror this pattern: methods with
explicit temporal reasoning produce polygons that expand
along Point and Pose, not just Depth.

Factor #2: how does 3D finetuning impact 3D aware-
ness? 3D-aware fine-tuning does not always benefit.
Aether (fine-tuned from CogVideoX with 3D-aware objec-
tives and conditions) indeed improves 3D awareness over
CogVideoX on DL3DV (Point 1.566 vs. 1.748, Depth 0.574
vs. 0.608, AUC@30 0.527 vs. 0.486; Table 1 (right)). How-
ever, on object-centric data, it is slightly worse than its base
model (Point 0.501 vs. 0.485, Depth 0.249 vs. 0.231; Ta-
ble 1 (left)). Such discrepancy likely relates to the training
data of Aether, which are mostly large synthetic scenes from
games/simulators. This result suggests that 3D generative
fine-tuning does have the potential to significantly improve
3D awareness, but how to avoid degraded generalization re-
mains an interesting research direction.

Qualitative analysis. Figure 3 and Figure 4 align well
with the ranking of 3D awareness in the quantitative tables.
On CO3Dv2, Fast3R, WAN2.1-14B, and Open-Sora2.0
yield the most faithful and consistent reconstructions: thin
structures and fine details (e.g., the gripper of the truck,
the armrests and legs of the chair) remain sharp after un-
projection, whereas other models exhibit noisy reconstruc-
tions and clear artifacts due to inconsistencies. On DL3DV,
DINOv2 can fail catastrophically (e.g. the first building
example, where the first view and the remaining views
scarcely overlap), while top video generators often produce
coherent point clouds. Overall, WAN2.1-14B delivers the
sharpest and most accurate reconstructions, matching its
lead in Table 1 (right). Similarly, Aether demonstrates a
clear improvement over CogVideoX qualitatively. Across
both datasets, most failure cases concentrate around object
boundaries.

4.3. Ablations
Factor #3: how does model size impact 3D awareness?
On the ablation set, we further study whether models at
larger scales produce more 3D-aware features. Given the
limited availability of open-source checkpoints, we study
the scaling of WAN and CogVideoX. For WAN, scaling the
model from 1.3B to 14B parameters significantly reduces
point-map error from 0.0468 to 0.0360 on the ablation set
(relatively −23%). In contrast, CogVideoX slightly wors-
ens in 3D awareness as parameters increase from 2B to 5B
(from 0.0576 to 0.0590, relatively +2%). This result sug-
gests that parameter count alone does not guarantee stronger
3D awareness. We hypothesize that additional training data
likely plays an important role here 1.

Localization: in which network layers, and at which
timesteps in diffusion models, is 3D information most

1Unlike CogVideoX that mainly scales the architecture, WAN includes
additional high-quality high-resolution data when scaling up.
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CO3Dv2 DL3DV

Method Point Err(↓) Depth Err(↓) AUC@5 (↑) AUC@30 (↑) Point Err(↓) Depth Err(↓) AUC@5 (↑) AUC@30 (↑)

Original VGGT [51] 0.476 0.205 0.076 0.565 2.751 0.518 0.058 0.363
VidFM-VGGT 0.289 0.145 0.178 0.718 1.034 0.319 0.183 0.686

Table 2. VidFM vs. DINO in VGGT. Comparison between VGGT [51] (DINO features) and our VidFM-based variant using frozen
WAN2.1-14B features on CO3Dv2 and DL3DV. Our model substantially improves all metrics, highlighting the advantage of video foun-
dation model features for feedforward 3D reconstruction under limited 3D data.

concentrated? We ablate which diffusion layer and
timestep yield the most 3D-aware features by sweeping over
three network layers and four denoising timesteps. Across
all the models we study, the optimum is consistent: mid-
network layers combined with an early-but-not-first time
step, are significantly better than other layers and time
steps. For the choice of layers, the observation of mid-
network layers outperforming early or late layers is intu-
itive: in diffusion models, late layers are specialized to the
per-frame RGB synthesis task, which suppresses high-level
3D-related features; whereas in too early layers, high-level
features might not have formed yet. For the choice of time
steps, in diffusion models, earlier time steps correspond to
less noise added to the data or encoded feature. Consider-
ing the task of denoising, either too little or too much noise
would lead to the degeneration of the task (i.e. either too
easy or too hard) and make the features less useful. Com-
paring between early and late timesteps, early steps work
better because the input signal is less corrupted by the noise.
Overall, mid-layer and moderately early features strike a
balance, retaining global 3D cues while being less influ-
enced by the large noise added for denoising.

4.4. VidFM Features for Feedforward 3D
Building on our previous analysis, we observe that features
from video foundation models (VidFMs), especially video
generative models such as WAN, are highly effective for
3D reconstruction. This raises a natural question: since
current state-of-the-art feedforward 3D reconstructors like
VGGT [51] rely on DINO features, how does the model
perform with VidFM features such as WAN?

We investigate this question in our relatively small-data
regime including DL3DV and CO3Dv2. We follow the
same dataset split as in the previous experiments, and train
(i) the original VGGT model from scratch, with DINO fea-
tures optimized end-to-end, and (ii) an otherwise identical
variant in which we replace DINO with frozen WAN2.1-
14B features. Under a matched compute budget, we train
both models to convergence and report the results in Ta-
ble 2. On these benchmarks, our VidFM-based VGGT con-
sistently outperforms the original VGGT by a large margin
across all metrics. These results suggest that, when high-
quality 3D supervision is limited to small datasets such as
CO3Dv2 and DL3DV, it is preferable to use video model

features rather than DINO features for feedforward 3D re-
construction.

4.5. Limitations
Our study relies on publicly released checkpoints rather
than models trained under controlled conditions. Compute
and data constraints prevent us from training video gener-
ators with precisely controlled variations at scale, so we
cannot strictly attribute 3D-awareness differences to several
factors of interest (e.g., data, training strategy). In particu-
lar, to the best of our knowledge, there are no open-source
models that provide multiple versions of checkpoints only
differing in the scale of training data; as a result, we can-
not isolate the effect of data scale. Meanwhile, due to re-
source constraints, we are unable to train large-scale 3D re-
construction models from scratch on massive datasets with
VidFM features—an interesting direction for future work.

5. Conclusion
In this paper, we study the 3D awareness of video foun-
dation models. Unlike prior work that focuses on image
models and relies on 2.5D or optimization-based proxies,
we probe video models using direct 3D prediction tasks.
We find that state-of-the-art video generators exhibit
strong, generalizable 3D awareness—even compared
to domain experts. Our experiments demonstrate the
importance of temporal reasoning for 3D understanding,
and we examine how 3D fine-tuning, model scaling, and
diffusion feature-extraction choices impact 3D awareness.
Our experiments also show the promise of using VidFM
features for 3D reconstruction in the limited-data regime.
Beyond analysis, our work presents a 3D evaluation
protocol and benchmark for existing video foundation
models. We will publicly release our code, data, and
weights, and we hope this work provides a solid step to-
ward understanding and building scalable 3D world models.
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How Much 3D Do Video Foundation Models Encode?

Supplementary Material

Original Probe Smaller Probe

Probed Feature Point Err(↓) Depth Err(↓) AUC@30 (↑) Point Err(↓) Depth Err(↓) AUC@30 (↑)

DINOv2 [36] 2.814 0.534 0.245 3.344 0.623 0.163
V-JEPA [5] 1.576 0.613 0.558 1.707 0.657 0.505
WAN2.1-14B [50] 1.051 0.323 0.660 1.317 0.374 0.567
Fast3R [58] 1.379 0.514 0.637 1.551 0.572 0.549

Table 3. Ablation on probe sizes. We compare the 3D awareness evaluation results using our original probe against a smaller probe on
DL3DV. The relative rankings and our conclusions remains unchanged despite the change of probe sizes.

This supplementary material presents additional exper-
iments and analyses on the 3D awareness of VidFMs.
In Sec. A, we study how probe size affects measured 3D
awareness and show that our main conclusions are robust
across probe capacities. In Sec. B, we extend our study
in Sec. 4.4 by showing how performance scales with the
amount of 3D training data. We demonstrate that strong
video generator features are especially beneficial for feed-
forward 3D reconstruction with limited 3D data or in chal-
lenging learning scenarios. Finally, in Sec. C, we analyze
the relationship between 3D probe performance and multi-
view feature consistency. We find that cross-view corre-
spondence alone can be a biased proxy for true 3D aware-
ness, especially when comparing different model families.

A. Ablation on Probe Size
In our main experiments, we employ shallow probes with
4 layers and 1024 channels. Here we evaluate whether our
conclusions remain valid under even smaller probes. We
follow the same experimental protocol as the main paper,
but use a significantly smaller probe by halving the model
width from 1024 to 512. Table 3 presents 3D awareness re-
sults for different-sized probes on DL3DV. We observe the
relative performance remain stable across probe sizes; us-
ing a smaller probe does not affect our conclusions: fea-
tures from state-of-the-art video generation models, e.g.,
WAN2.1-14B, exhibit strong 3D awareness compared to
other model categories.

B. Data Scaling for VidFM VGGT
In Table 2 of the main paper, we compare the original
VGGT with our variant that uses VidFM features. We
show that using VidFM features significantly benefits feed-
forward 3D models under limited resources: under the
same training data, VidFM-VGGT outperforms the orig-
inal VGGT by a large margin. We now extend this ex-

periment by studying how performance changes with the
amount of available training data. The scaling behaviors of
both VGGT variants on CO3Dv2 and DL3DV are shown in
Figure 6. In each plot, the dotted line denotes the perfor-
mance of the original VGGT trained with 100% of the 3D
training data. Our VidFM-VGGT typically surpasses the
full-data baseline with only less than 10% of the training
data across all metrics. Such contrast suggests that it is pos-
sible to induce strong 3D understanding from video features
with a tiny fraction of 3D data, especially when compared to
the commonly used image features. Thus, strong video gen-
erator features are particularly valuable in low-data settings.
The gap is especially large on DL3DV, where the scenes are
much more diverse and cluttered. This indicates that strong
video generator features substantially benefit 3D learning in
diverse and challenging data domains. Due to the availabil-
ity of compute and data, we are not able to extrapolate our
curves to the scale of original VGGT’s training set, which
pools most available 3D data. Such extrapolation will be an
interesting future direction.

C. Analysis on Multi-view Consistency
We study how a model’s 3D probe performance relates to
multi-view consistency, which prior works often consider
as a proxy for 3D awareness [12].

Measuring multi-view consistency. To quantify multi-
view consistency, we measure the cross-view correspon-
dence error of different VidFM features. Cross-view corre-
spondence error is defined as the pixel distance between the
predicted correspondence and groundtruth correspondence.
To obtain groundtruth correspondence, we sample a random
anchor view A and a set of pixels within this view. We then
reproject these pixels to another view B using ground-truth
3D, and record their locations if they are not occluded. To
obtain predicted correspondence, we use the standard near-
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(i) CO3Dv2 Results

(ii) DL3DV Results

Figure 6. Data scaling on CO3Dv2 and DL3DV. For each dataset we report point map error, depth error, and AUC@30 against the
fraction of data used to train the model. The horizontal dashed line denotes the performance of the original VGGT trained with 100% of
the 3D data. VidFM VGGT typically outperforms this full-data baseline with less than 10% of the 3D training data.

Figure 7. 3D awareness vs. multi-view consistency. Scatter plot
of 3D Probe Error (lower is better) versus Cross-view Correspon-
dence Error (lower is better). Within the family of video diffusion
models, the 3D probe error positively correlates with the multi-
view correspondence error. DINOv2 and V-JEPA achieve great
multi-view correspondence, while performing significantly worse
in 3D probing experiments. This suggests that cross-view feature
similarity may not be a sufficient proxy for measuring 3D aware-
ness, especially when comparing across families of models.

est neighbor query in feature space: for each anchor points

in view A, we retrieve the top-1 nearest neighbor in view B
based on the VidFM features. We then compute the average
Euclidean pixel distance between the predicted correspon-
dence and groundtruth correspondence. We use this mean
distance as our measure of multi-view feature consistency,
reported as cross-view correspondence error.

Correlation between 3D probe and multi-view consis-
tency. Figure 7 plots 3D probe error (x axis; lower is
better) against cross-view correspondence error in pixels (y
axis; lower is better). We perform this analysis on CO3Dv2,
where the probe error is the point error reported in Table 1
in the main paper. Among video diffusion models, we ob-
serve a positive correlation, where lower probe error accom-
panies lower correspondence error. CogVideoX is the worst
on both axes, Open-Sora2.0 and WAN2.1-1.3B are interme-
diate, and WAN2.1-14B is the best (bottom-left). By con-
trast, feedforward models (Fast3R, V-JEPA, DINOv2) lie
below the diffusion models. At a comparable probe error,
they show better multi-view consistency. Within feedfor-
ward models, DINOv2 achieves particularly strong multi-
view consistency, yet performs poorly at inferring global
3D properties from its features. We now discuss possible
reasons for these observed discrepancies.

Comparison: diffusion models vs. feedforward models.
Diffusion models exhibit worse multi-view feature consis-
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tency than feedforward models at the same level of 3D
awareness. This follows from how diffusion features are ex-
tracted: noise is injected into the VAE features and a single
denoising step is performed to estimate the noise or veloc-
ity. This not only makes features noisy at locations where
large noise is added, but the underlying representation also
includes features specifically tailored to denoising, which
is affected by the random noise. Consequently, two pixels
corresponding to the same 3D point across frames can carry
different features, leading to feature discrepancies that sup-
press the raw feature consistency even when the underlying
3D structure is well-recoverable by shallow probes.

Comparison: video models vs. image models. DINOv2
attains especially strong multi-view consistency, surpassing
even the self-supervised video encoder V-JEPA. We hypoth-
esize that in video models some channels correlate with lo-
cal motions at the current frame; pixels corresponding to the
same 3D point may exhibit different local motions across
frames. In this way, while video models encode richer tem-
poral information that aids 3D decoding, their features can
appear less “consistent” under nearest-neighbor matching.
Such factor makes feature consistency alone a potentially
biased evaluation for measuring 3D awareness.
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