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Figure 1. We propose Reflect3D, a zero-shot 3D reflection symmetry detector capable of accurately detecting 3D symmetry from a single
RGB image of an arbitrary object. Conditioned on the detected symmetry, we improve single-image 3D generation in both geometry and
texture quality.

Abstract

Symmetry is a ubiquitous and fundamental property in
the visual world, serving as a critical cue for perception
and structure interpretation. This paper investigates the de-
tection of 3D reflection symmetry from a single RGB im-
age, and reveals its significant benefit on single-image 3D
generation. We introduce Reflect3D, a scalable, zero-shot
symmetry detector capable of robust generalization to di-
verse and real-world scenarios. Inspired by the success
of foundation models, our method scales up symmetry de-
tection with a transformer-based architecture. We also
leverage generative priors from multi-view diffusion models
to address the inherent ambiguity in single-view symmetry
detection. Extensive evaluations on various data sources

demonstrate that Reflect3D establishes a new state-of-the-
art in single-image symmetry detection. Furthermore, we
show the practical benefit of incorporating detected sym-
metry into single-image 3D generation pipelines through
a symmetry-aware optimization process. The integration
of symmetry significantly enhances the structural accuracy,
cohesiveness, and visual fidelity of the reconstructed 3D ge-
ometry and textures, advancing the capabilities of 3D con-
tent creation.

1. Introduction

”Symmetry is what we see at a glance.” — Blaise Pascal.

Symmetry is ubiquitous in both natural and artificial
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objects. It serves as a crucial visual cue that helps hu-
mans perceive object structure and interpret spatial relation-
ships [35]. In computer vision, symmetry has long been
leveraged as a structural constraint to simplify complex vi-
sual tasks, such as pose estimation [23, 47], grasp detec-
tion [31], and 3D reconstruction [38, 39, 41, 43]. While ex-
isting methods achieve impressive symmetry detection re-
sults from 3D or depth data [8, 12, 13, 25, 30, 32, 46], de-
tecting symmetry from a single RGB image remains chal-
lenging and underexplored. Past approaches have made
progress with restricted object categories [20, 48]. How-
ever, robust zero-shot symmetry detection from a single im-
age of arbitrary objects remains an open challenge.

Inspired by the transformative impact of foundation
models in NLP [4], vision [16, 26], and speech [29], we re-
visit single-image symmetry detection through a foundation
model perspective. The key to the success of foundation
models has been the combination of versatile transformer-
based architectures and large, diverse datasets. Based on
this observation, we design a transformer-based model for
symmetry detection with minimal use of explicit 3D induc-
tive priors. We train this model end-to-end on our large-
scale 3D symmetry dataset that combines Objaverse [6] and
ShapeNet [5].

One of the major challenges in single-image symmetry
detection is single-view ambiguity [48], where depth, per-
spective distortion, and occlusion obscure symmetry cues.
We propose to address this problem by leveraging a gen-
erative prior. We apply multi-view diffusion models [21] to
synthesize surrounding views of the target object, providing
a more complete and less ambiguous perspective on sym-
metry. By aggregating symmetry predictions across multi-
ple views, we achieve comprehensive and accurate symme-
try detection.

Specifically, our approach introduces a novel pipeline for
single-image symmetry detection. We first generate mul-
tiple surrounding views of the object using a multi-view
diffusion model. Next, we apply our feed-forward sym-
metry detector across each view. Our symmetry detector
includes three modules: 1) a frozen DINOv2 encoder that
extracts geometry-aware image features, 2) a transformer-
based symmetry decoder that uses cross-attention to query
these features with various symmetry hypotheses, and 3)
MLP heads that classify these hypotheses and refine them
through a regressive correction stage. Finally, predictions
from all views are clustered and aggregated, yielding pre-
cise and comprehensive symmetry predictions.

We evaluate our detected symmetry on two challeng-
ing real-world scanned-object datasets, GSO [7] and Om-
niObject3D [40]. Despite the significant domain shifts from
synthetic training data, our model demonstrates remarkable
generalization ability. Even without multi-view aggrega-
tion, our feed-forward symmetry detector already achieves

state-of-the-art performance. With multi-view aggregation,
our symmetry detection performance further improves by a
significant margin. We also illustrate the robustness of our
approach on in-the-wild internet images.

Finally, we demonstrate the practical utility of sym-
metry detection in improving single-image 3D generation
pipelines. By integrating symmetry predictions into the
Score Distillation Sampling (SDS) optimization process,
we observe improved 2D and 3D fidelity across both real-
world datasets and in-the-wild images, highlighting the
broader impact of our symmetry detection approach.

2. Related Work
Symmetry Detection. Early works on symmetry detection
introduce several foundational algorithms [2, 17, 37, 44].
Most of these efforts focus on detecting 3D symmetry from
explicit 3D representations. For instance, [25] introduces
methods for detecting partial and approximate 3D symme-
try. More recent works [8, 13, 19] apply neural networks
to the problem. Specifically, [12] leverages diffusion mod-
els to detect partial symmetry in noisy 3D data, achieving
strong performance but still relying on 3D input. Several
papers [30–32, 46] extend 3D symmetry detection to RGB-
D or depth data. They unproject depth into incomplete
3D point clouds and detect symmetry from the 3D point
clouds. Despite these efforts, detecting 3D symmetry di-
rectly from 2D RGB image remains challenging and under-
explored. [48] introduces NeRD, a neural reflection sym-
metry detector that constructs 3D cost volumes from RGB
image and camera parameters, then detects symmetry based
on these cost volumes. While NeRD [48] and its succes-
sor NeRD++ [20] achieve reasonable results on in-domain
categories and images, they struggle to generalize to in-the-
wild scenarios. In contrast, our Reflect3D demonstrates a
strong zero-shot generalization ability to diverse real-world
imagery.
Single-image to 3D. Single-image 3D reconstruction or
generation aims to infer 3D structures from a single 2D
image. This is a highly challenging task due to the inher-
ent ambiguity of inferring 3D from only a single viewpoint.
Recent work has made significant progress and can be clas-
sified into three main directions: 1) feed-forward 3D re-
construction [10, 11, 33, 36], 2) diffusion-based 3D gener-
ation [14, 18], and 3) optimization-based approaches [27,
34]. In our work, we take optimization-based approaches as
a case study, where we integrate our detected symmetry into
an optimization pipeline. Specifically, most of the recent
optimization-based 3D generation methods are based on
Score Distillation Sampling (SDS). DreamFusion [27] ini-
tially proposes SDS. The high-level idea is to leverage a pre-
trained 2D diffusion model as an image prior to regularize
the optimization of a Neural Radiance Field (NeRF) [24].
Zero-1-to-3 [21] introduces an image-conditioned novel
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Figure 2. Overview of Reflect3D, our zero-shot single-image symmetry detector. Top: Our transformer-based feed-forward symmetry
detector (Section 3.2) predicts symmetry planes from a single RGB image. Bottom: Our multi-view symmetry enhancement pipeline
(Section 3.3) leverages multi-view diffusion to resolve the inherent single-view ambiguity in symmetry detection. Aggregating symmetry
predictions from multiple synthesized views results in more precise and comprehensive symmetry predictions.

view synthesis diffusion model, which can be used to im-
prove SDS guidance. DreamGaussian [34] incorporates the
3D Gaussian splatting [15] representation to improve the
efficiency and quality of SDS-guided 3D generation. Our
approach to leveraging symmetry detection for reconstruc-
tion builds on DreamGaussian, and incorporates symmetry
priors to enhance the geometry and texture fidelity of single-
image 3D generation.

Symmetry for 3D Reconstruction. Symmetry has long
been recognized as a powerful cue for recovering 3D struc-
tures of objects [42]. Recent works [38, 39, 41, 43] study
the utility of symmetry in the less constrained single-image
3D reconstruction problem. However, these methods are
often constrained to specific object categories, such as
faces [38] or rotational artifacts [39], or limited to small
datasets covering a few categories [41, 43]. In contrast, our
work builds on the insight of leveraging symmetry prior to
aid 3D reconstruction in a more generalizable manner. We
introduce a zero-shot symmetry detection approach extend-
ing beyond category-specific constraints. Unlike [41, 43]
that can detect symmetry and reconstruct 3D shapes on
about 15 categories, we train our symmetry detector on
thousands of categories to enable generalization to in-the-
wild imagery. Furthermore, we demonstrate the benefit of
integrating symmetry cues in modern single-image 3D gen-
eration pipelines [34] guided by diffusion models. Using
our accurate symmetry estimation, we achieve superior fi-
delity in the generated 3D structure and texture.

3. Method
In this section, we describe our single-image 3D symmetry
detector, Reflect3D, and our symmetry-aware 3D genera-
tion approach. We begin by formalizing the symmetry de-
tection problem in Section 3.1. We then introduce our feed-
forward symmetry detector in Section 3.2. We discuss our
multi-view symmetry enhancements pipeline in Section 3.3.
Finally, in Section 3.4, we describe how we integrate our de-
tected symmetry into SDS for single-image 3D generation.

3.1. Problem Definition

Reflection Symmetry. We follow the definition of reflec-
tion symmetry in [48]. Consider the set of points in homo-
geneous coordinates on the surface of a 3D shape, S ⊂ R4.
The shape exhibits reflection symmetry with respect to a
plane p, if there exists a plane p such that for every point
x ∈ S, its reflected point Mpx is also contained within
S. Here, Mp is the reflection transformation matrix across
plane p. The surface properties F (x) at point x are pre-
served under reflection. Formally:

S = Mp(S) and F (x) = F (Mpx) (1)

The reflection matrix Mp ∈ R4×4 corresponding to
plane p is defined as:

Mp =

[
I− 2npn

T
p −2dpnp

0 1

]
(2)

Where the plane p is parameterized by its normal vector
np ∈ R3 and its distance dp from the origin.
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In Equation (1), Mp(S) = {Mpx | x ∈ S} represents
the set of all points in S reflected across the plane p, and
F (x) represents the surface properties at point x, such as
texture.
Symmetry Detection. In this work, we address the prob-
lem of single-image reflection symmetry detection. Given
an object-centric image I ∈ Rh×w×3 with underlying 3D
shape S ⊂ R3, we aim to find a set of symmetry planes P ,
defined as:

P = {p | p = (np, dp),np ∈ R3, dp ∈ R, ∥np∥ = 1} (3)

Such that for each p ∈ P , S = Mp(S) and F (x) =
F (Mpx). P could be an empty set for completely asym-
metric objects.

Due to single-view scale ambiguity, it is challenging to
determine the absolute distance dp from the symmetry plane
to the origin during symmetry detection. We follow [48] to
detect np ∈ R3 and resolve the relative dp using other cues,
e.g., make it consistent with generated 3D representation in
symmetry-aware 3D generation.

3.2. Feed-Forward Symmetry Detector

Inspired by the success of foundation models, we pro-
pose our feed-forward single-image symmetry detector Re-
flect3D, illustrated in the top section of Figure 2.
Image Encoder. Previous works in correspondence learn-
ing [3, 45] have identified that DINOv2 [26] is sensitive to
3D spatial features of objects. In contrast to other foun-
dation models, such as CLIP [28], which focuses more on
object semantics, DINOv2 aligns better with our goal of
detecting geometric cues that facilitate accurate symmetry
prediction. We use a frozen DINOv2 encoder to encode our
images into a set of features.
Symmetry Decoder. Given the spatial features from our
encoder, we design a decoder that transforms these features
into symmetry predictions. We discretize the space of pos-
sible symmetry plane normals by evenly sampling N fixed
unit vectors spanning a hemisphere, which serve as symme-
try hypotheses. Each hypothesis represents a small neigh-
borhood containing all normal vectors closest to this nor-
mal. Hence our hypotheses cover all possible normals. For
each hypothesis, we classify whether its neighborhood con-
tains a ground-truth symmetry plane and regress the exact
normal vector from the hypothesis. Note that our symme-
try hypotheses only span a hemisphere rather than the entire
unit sphere because a normal vector n and its opposite −n
represent the same plane.

Our symmetry hypotheses are N 3-dimensional vec-
tors. We transform the N hypotheses into high-dimensional
query features with a shallow MLP. We then apply cross-
attention between the query features and image features,
followed by a set of self-attention and MLP layers. This
yields N feature vectors, each corresponding to a symmetry

hypothesis. For each feature vector, we apply an MLP head
to perform binary classification of symmetry, and another
MLP head to regress the rotation residual parameterized by
a quaternion. Symmetry predictions are obtained by apply-
ing the quaternion to the corresponding positive hypothesis.
Our detector also provides a confidence score for each pre-
diction derived from the classification probability.
Training. To train our feed-forward symmetry detector, we
need to assign each ground truth symmetry plane normal to
a corresponding symmetry hypothesis. We sample a suffi-
cient number of hypotheses to ensure that the geodesic dis-
tance between each two ground truths is much larger than
the geodesic distance between two hypotheses. Then each
ground truth is matched to its nearest symmetry hypothe-
sis. We supervise the symmetry binary classification using
binary cross-entropy (BCE) loss, and supervise the quater-
nion regression using mean squared error (MSE) between
the predicted normal and the ground truth.

3.3. Multi-view Symmetry Enhancement

A major difficulty in single-image symmetry prediction is
the single-view ambiguity—the high uncertainty of the back
surface of objects makes the learning ambiguous, especially
under a regression framework. We explore using a multi-
view diffusion model to resolve this ambiguity and enhance
the robustness of our symmetry prediction (see Figure 2
bottom).

To aggregate symmetry predictions from different views,
we first apply the multi-view diffusion model conditioned
on the input image, and generate M views surrounding the
origin. We then filter out inconsistent output images via
CLIP-Similarity [28]. We apply our feed-forward symme-
try model to the remaining views to obtain a set of symme-
try predictions. After rotating all predictions into the co-
ordinate system of the input image view, we perform a K-
Means clustering to aggregate the predictions. Finally, we
take the cluster centers as our symmetry normal prediction.

3.4. Single-image 3D Generation

We present a novel pipeline for generating 3D textured
meshes from a single image, guided by our detected sym-
metry. Our method is illustrated in Figure 3.
Preliminary. Our work is built on DreamGaussian. Dream-
Gaussian addresses the single-image 3D generation through
two stages: SDS optimization and UV texture refinement.
In the SDS optimization stage, the scene is initialized as
Gaussian splats distributed on a unit sphere. The optimiza-
tion leverages two loss functions: an MSE loss to align with
the input view image and an SDS loss, guided by a diffu-
sion model, applied to randomly sampled novel views. Af-
ter this stage, a mesh is extracted from the Gaussian splat-
ting scene using the marching cubes algorithm [22]. The
texture is then refined in the UV space. The optimization
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Figure 3. Our symmetry-aware 3D generation pipeline (Section 3.4). Building on DreamGaussian [34], we integrate the detected symmetry
through three steps, namely, symmetry alignment, symmetric SDS optimization, and symmetric texture refinement.

Base Dataset #Objects #Categories #Images
#Symmetry

Planes

SN-ShapeNet [30] ShapeNet 30,000 11 300,000 38,592∗

SN-YCB [30] YCB 18 18 16,189 57∗

NeRD-ShapeNet [48] ShapeNet 35,030 13 175,122 35,030
NeRD-Pix3D [48] Pix3D 5,285 9 5,285 5,285

Ours
Objaverse

+ ShapeNet 84,789 1,154 1,095,949 152,019

Table 1. Statistics of our curated dataset. Compared to datasets
used in prior works, our curated data enjoys a much higher object
diversity and image quantity. ∗ denotes an estimate because the
exact training datasets are not released in full.

target of the refinement includes an MSE loss applied to the
input view and a texture refinement loss. To compute the
texture refinement loss, we first add noise to the rendered
images from random viewpoints. A 2D diffusion model is
then applied to denoise these images. Finally, we calculate
the MSE loss between the rendered and denoised images.
We incorporate symmetry into DreamGaussian [34] in three
stages: symmetry alignment, symmetric SDS optimization,
and symmetric texture refinement.
Symmetry Alignment. As described in Section 3.1, our
symmetry detection process identifies the symmetry plane
direction np ∈ R3. In this stage, we optimize the 3D loca-
tion and orientation of the symmetry plane to align it with
the Gaussian scene. Specifically, we perform the first stage
of DreamGaussian optimization without the MSE loss for
a limited number of steps. This produces a coarse Gaus-
sian representation with blurred texture and limited detail.
From the coarse Gaussian, a point cloud is extracted, and
the detected symmetry plane is aligned with the point cloud.
Specifically, we reflect the point cloud using the current
symmetry estimation, and perform Iterative Closest Points
(ICP) between the original and reflected point clouds. We
provide detailed description of this alignment process in the
appendix.
Symmetric SDS Optimization. In this stage, symmetry in-
formation is incorporated in two key steps. First, instead of
sampling a single camera view for the SDS loss, we com-

pute SDS losses for both the sampled view and its sym-
metric counterpart. Second, we symmetrically densify the
Gaussian splatting periodically. Every 100 iterations, all
Gaussians are reflected across the symmetry planes, and
50% of these reflected Gaussians are randomly sampled and
appended to the original set. These strategies encourage
symmetry while allowing for minor deviations, accommo-
dating the natural asymmetries often observed in real-world
objects.

Symmetric Texture Refinement. In this stage, we extract
a mesh from the 3D Gaussians and optimize the UV tex-
ture conditioned on the symmetry. Specifically, for mesh
regions visible from the input view, the texture is refined di-
rectly using an MSE loss with the input image. For regions
visible only from the mirrored view, we refine the UV tex-
ture using an MSE loss with a flipped image. The same tex-
ture refinement loss as DreamGaussian is applied to the re-
maining regions. Overall, this three-stage approach ensures
that the generated 3D shape respects its inherent symmetry,
enhancing consistency between the object’s front and back
sides.

3.5. Implementation Details

We train our feed-forward symmetry detector using the
Adam optimizer with a learning rate of 3e−5. We use a
batch size of 120 and train for 15 epochs. We set the number
of symmetry hypotheses N to 31. Since reflection symme-
try planes are often far apart in direction, we find this num-
ber of hypotheses is sufficient to prevent multiple symmetry
planes from being assigned to the same query. We empir-
ically discover that varying the number of hypotheses in a
reasonable range has minimal impact on performance. In
multi-view enhancement, we set the number of novel views
M to 8. We found that 8 views are sufficient and the per-
formance saturates with more views. More implementation
details are available in the appendix.
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GSO OmniObject

Method F@5◦↑ F@15◦↑ F@30◦↑ F@50◦↑ GD↓ F@5◦↑ F@15◦↑ F@30◦↑ F@50◦↑ GD↓
Random Guess 0.007 0.043 0.190 0.464 48.4 0.007 0.062 0.187 0.374 52.1
Shape to Symmetry 0.021 0.128 0.283 0.785 34.9 0.023 0.112 0.236 0.587 34.6
NeRD [48] 0.040 0.398 0.461 0.564 36.2 0.055 0.166 0.328 0.590 41.3

Reflect3D-FF (Ours) 0.191 0.452 0.676 0.867 22.7 0.103 0.276 0.478 0.710 31.1
Reflect3D (Ours) 0.390 0.756 0.848 0.889 13.3 0.173 0.474 0.650 0.799 22.8

Table 2. Quantitative results of our symmetry detection method. Best results are in bold, and second-best results are underlined. GD
represents average geodesic distance. Our feed-forward model Reflect3D-FF, directly applied to the input image, already achieves state-
of-the-art performance. Our multi-view enhanced Reflect3D delivers significant additional improvements.

GSO OmniObject

Method CLIP-Sim↑ CD↓ F@0.1↑ F@0.2↑ F@0.5↑ CLIP-Sim↑ CD↓ F@0.1↑ F@0.2↑ F@0.5↑
DreamGaussian [34] 0.592 0.442 0.158 0.404 0.767 0.704 0.441 0.199 0.427 0.724
Ours 0.629 0.414 0.172 0.451 0.827 0.734 0.421 0.208 0.457 0.765

Table 3. Quantitative results of our single-image 3D generation method for symmetric objects. CD represents Chamfer distance. Our
approach improves both 2D and 3D fidelity compared to the baseline.

Method F@5◦↑ F@15◦↑ F@30◦↑ F@50◦↑ GD↓
Reflect3D (Ours) 0.390 0.756 0.848 0.889 13.3

w/o clustering 0.312 0.655 0.752 0.789 16.0

Reflect3D-FF (Ours) 0.191 0.452 0.676 0.867 22.7
DINOv2 → ViT 0.094 0.386 0.616 0.728 24.7
Frozen → Finetune 0.038 0.236 0.435 0.644 34.2

Table 4. Ablation studies for our symmetry detector Reflect3D on
the GSO dataset. Both the clustering-based multi-view aggrega-
tion and our frozen, geometric feature-aware encoder are crucial
to symmetry detection performance.

4. Data Curation
Training Data. To scale up the training of our Reflect3D,
we construct a large-scale symmetry detection dataset by
combining Objaverse [6] and ShapeNet [5], resulting in a
diverse and extensive 3D reflection symmetry dataset. For
the Objaverse dataset, we utilize only the high-quality sub-
set corresponding to LVIS [9] categories. Symmetry ground
truth is generated using an optimization-based approach.
Specifically, we uniformly sample many candidate planes,
reflect the 3D shape by all the candidate planes, and use
Chamfer distance to verify whether this candidate likely
corresponds to a symmetry plane, followed by an ICP-based
refinement for the detected symmetry plane. More details
are available in the appendix. The generated symmetry
ground truth has been verified through manual inspection
of a random subset to ensure alignment with human per-
ception. Table 1 highlights the advantages of our dataset
compared to previous symmetry datasets. Our dataset of-
fers significantly greater diversity in object categories and
more comprehensive coverage of symmetry planes, as re-
flected in the higher number of symmetry planes per object.
Evaluation Data. Previous works on symmetry detection,
such as [20, 30, 48], evaluate their methods on a validation
split of their training datasets. In contrast, we evaluate our

w/o Symmetric SDS

w/o Symmetric Texture Refinement

w/o Symmetry Alignment

w/o Symmetric Densification

Figure 4. Ablation studies for our single-image 3D generation
pipeline. Removing each component adversely affects geometry
quality, texture quality, or both.

symmetry detection model, Reflect3D, in a more challeng-
ing approach to assess generalization to novel, unseen ob-
jects. Specifically, we evaluate on two scanned real-world
3D object datasets: Google Scanned Object (GSO) [7] and
OmniObject [40]. The ground truth for these test datasets
is generated and validated using the same methodology em-
ployed for the training data. We use all symmetric objects
from GSO (572 objects) and a randomly sampled subset of
OmniObject3D (100 objects). We also test our single-image
3D generation methods on the same test sets. These test sets
provide a comprehensive assessment of models’ generaliza-
tion ability across diverse semantic categories and domains.

5. Symmetry Detection Results

Evaluations Metrics. Given a set of predicted symmetry
plane normals U = {u1,u2, ...} and ground truth nor-
mals V = {v1,v2, ...}, we evaluate predictions U against
ground truth V with two metrics based on geodesic dis-
tance. The geodesic distance between any two normals u
and v, defined as θ(u,v) = cos−1(u · v), measures the
angular difference between them.
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We calculate F-scores at various geodesic distance
thresholds. Given a threshold ϕ in degrees, a predicted
and ground truth normal pair is considered a match if their
geodesic distance is below ϕ. The F@ϕ metric is the har-
monic mean of precision@ϕ and recall@ϕ. Intuitively,
F@ϕ represents the percentage of correct predictions within
a specified threshold.

We also calculate an average geodesic distance (GD).
This metric evaluates both the exactness and completeness
of predictions, similar to the precision-recall trade-off in F-
scores. For exactness, each predicted normal u is matched
to its closest ground truth normal v∗, and their average
geodesic distance θp is calculated. For completeness, each
ground truth normal v is matched to its closest predicted
normal u∗), yielding an average geodesic distance θr. The
final metric is computed as θavg = (θp + θr)/2.
Baseline: Shape to Symmetry. A straightforward baseline
for single-image 3D symmetry detection is to first gener-
ate a 3D shape conditioned on the image, and then detect
symmetry planes from the 3D shape. We use our single-
image 3D generation baseline [34] to generate 3D shapes
from input images. Then we apply our method for generat-
ing symmetry ground truth to these 3D shapes. The details
for this method are discussed in Section 4 and the appendix.
Baseline: NeRD [48]. NeRD represents the state-of-the-art
in single-image 3D reflection symmetry detection. NeRD
iteratively samples candidate symmetry plane normals fol-
lowing a coarse-to-fine strategy. Each candidate normal, to-
gether with known camera intrinsics, is used to warp 2D im-
age features and construct a 3D cost volume. The cost vol-
ume is processed by 3D convolutions to compute a symme-
try score. The candidate with the highest score is selected
as the final prediction. We use the official implementation
of NeRD and report the performance of the best-performing
checkpoint on our test sets.
Symmetry Results. The results of our symmetry detec-
tion experiments are summarized in Table 2. Even with-
out any multi-view information, our feed-forward model al-
ready significantly outperforms all baselines. Specifically,
our feed-forward method is both 2 to 4 times more pre-
cise than prior state-of-the-art methods reflected in F@5◦,
and also more comprehensive than previous methods as
shown in F@50◦. Incorporating multi-view information
further enhances performance, leading to a 1.7 to 2 times
improvement in F@5◦ and reducing the average geodesic
distance by 9.4◦ and 8.3◦ on the two datasets respectively.
These results validate the effectiveness of scaling up our
feed-forward transformer model and highlight the substan-
tial gains from leveraging multi-view information to miti-
gate single-view ambiguity.

Qualitative results in Figure 5 further demonstrate the
robustness of our approach. NeRD struggles to general-
ize to unseen novel objects, often incorrectly predicting a

false front-to-back symmetry plane. In contrast, Reflect3D
achieves accurate symmetry predictions for these complex,
unseen objects.
Symmetry Ablations. We perform ablation studies on the
GSO dataset to validate our design decisions in Reflect3D.
In our multi-view enhancement pipeline, clustering the pre-
dictions from different views is crucial, since this elimi-
nates redundant predictions that are close together and cor-
respond to the same underlying symmetry plane. In our
feed-forward model, the choice of feature representation
is crucial. Replacing DINOv2 with ImageNet-trained ViT
leads to less precise and less comprehensive predictions.
Freezing DINOv2 and only training the decoder is also es-
sential, as fine-tuning drastically degrades the performance.
We speculate the pre-trained DINOv2 feature is key to the
generalizability of our approach.

6. Single-Image 3D Generation Results
Dataset and Metric. We evaluate single-image 3D gener-
ation on the same datasets used for symmetry evaluation,
i.e., GSO and OmniObject3D. The evaluation employs both
2D and 3D metrics. For 2D appearance quality, we cal-
culate CLIP similarity following [34]. For 3D geometric
quality, we calculate Chamfer distance and F-score follow-
ing [11]. Specifically, for 3D evaluation, we first leverage
ambient occlusion to remove the internal surface. Then we
uniformly sample a large number of points from both the
predicted and ground truth meshes to calculate Chamfer dis-
tance and F-score at various distance thresholds.
Baseline: DreamGaussian [34]. DreamGaussian intro-
duces an efficient and high-quality framework for image-
conditioned 3D content generation based on Score Dis-
tillation Sampling (SDS). Details of the DreamGaussian
pipeline are introduced in Section 3.4. We select the best-
performing image-conditioned variant of DreamGaussian,
which uses Stable-Zero123 [1] as guidance in the SDS op-
timization.
3D Generation Results. We summarize our symmetry-
conditioned single-image 3D generation results in Table 3.
We show that by integrating the symmetry prior, we effec-
tively improve 3D generation in both 2D and 3D metrics.
Qualitative comparisons in Figure 6 highlight the benefit
of incorporating the symmetry prior. Symmetry helps to
avoid missing details (rows 1, 2, and 5) and structural er-
rors. For example, in the baseline results, the left leg of
the glasses (row 3) is misinterpreted as part of the circu-
lar frame, and the tank barrel (row 4) is incorrectly con-
nected to the base rather than the turret. Our method recti-
fies these issues. Additionally, the unobserved back side of
the baseline-generated objects often lacks geometric detail
and texture, whereas our approach leverages symmetry to
produce significantly improved geometry and textures for
the back side (rows 6, 7, and 8).
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Input Image NeRD Ours

Figure 5. Qualitative results for our symmetry detection pipeline.
Our Reflect3D achieves better generalization and precision than
NeRD [48]. Please refer to our project webpage for video results.

Single-Image 3D Generation Ablations. Ablation studies
for our method are shown in Figure 4. Each of the four
components in our pipeline is critical to achieving high-
quality geometry and texture. Removing symmetry align-
ment results in inaccurate symmetry, causing distorted ap-
pearances. Removing symmetrically sampled SDS leads
to lower overall quality and worse symmetry in details, as
highlighted in red. Omitting symmetric densification pro-
duces sparse outputs that fail to fully respect symmetry.
Finally, removing symmetric texture refinement results in
blurry textures on the unobserved back side. The synergy
of these components is essential for the superior geometry
and texture quality achieved by our method.

7. Limitations

A majority of man-made objects and a significant propor-
tion of natural objects are symmetrical. However, there
exist objects that are completely asymmetric or highly de-
formable. Our approach is not designed to handle these ob-
jects. However, as mentioned in Section 3.4, our method

Input Image DreamGaussian Ours

Figure 6. Qualitative results for our symmetry-conditioned single-
image 3D method. Leveraging detected symmetry, our method
avoids missing details and corrects geometric errors (top 4 rows).
Meanwhile, we greatly improve the texture and geometric quality
of the unobserved object backside (bottom 3 rows). Please refer to
our project webpage for video results.

does have tolerance for asymmetric details. Addressing the
challenges for these objects remains an avenue for future
work.

8. Conclusion
We propose Reflect3D, a scalable zero-shot approach for
single-image reflection symmetry detection. Through im-
provements in architecture, data, and our multi-view aggre-
gation to tackle single-view ambiguity, we significantly im-
prove the generalization performance of single-image sym-
metry detection. Furthermore, we empirically demonstrate
that our detected symmetry can enhance SDS-based single-
image 3D generation pipelines, resulting in substantial im-
provements in the structural and textural quality of the gen-
erated objects.
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9. Appendix

In this appendix, we present 1) a detailed description of our
ground truth symmetry plane generation method; 2) more
implementation details for our Reflect3D symmetry detec-
tor and our single-image 3D generation pipeline. All refer-
ences and citations in this supplementary document refer to
the main paper.

9.1. Dataset

In this section, we provide more details on generating
ground truth reflection symmetry for our training and eval-
uation datasets. This generation method is also used in our
Shape to Symmetry baseline method.
Automatic Ground Truth Generation. We propose a re-
liable protocol to efficiently generate accurate symmetry
ground truth for arbitrary 3D datasets. First, for each mesh
in the 3D dataset, we center it by its bounding sphere center
and normalize it by scaling its bounding sphere to a unit
sphere. This ensures the center of any potential ground
truth symmetry plane is on the origin. Then we uniformly
sample Np points from this mesh. To find the symmetry
plane, we generate a set of Nc unit vectors uniformly span-
ning a unit hemisphere as candidates for symmetry plane
normals, analogous to the symmetry hypothesis in our Re-
flect3D single-image symmetry detector. These candidates
only span a hemisphere rather than the entire unit sphere
because a normal vector n and its opposite −n represent
the same plane. For each candidate normal, we derive its
corresponding candidate plane as the plane passing through
the origin and having a normal as the candidate normal. We
choose a large enough number of sampled points Np and
symmetry candidates Nc, empirically we use Np = 50000
and Nc = 31.

We reflect the point cloud by each candidate plane. Then
by how well the reflected point cloud and the original point
cloud align, we can infer whether the plane is a ground truth
symmetry plane of the shape. We calculate a Chamfer dis-
tance between the original and reflected point clouds. We
manually select a threshold to eliminate low-quality sym-
metry planes. We determine this threshold after comprehen-
sively examining the results and making sure it aligns with
human perception of symmetry. Meanwhile, for candidate
planes that pass the threshold, we can refine them by regis-
tering the reflected point cloud to the original point cloud.
We apply the iterative closest point (ICP) algorithm for this
registration. Then we derive a refined symmetry plane from
the registered point clouds.

9.2. Implementation Details

Reflect3D. Our method employs a frozen DINOv2 back-
bone with the ViT-L/14 architecture. The symmetry de-
coder consists of 4 layers with 256 channels. Our Adam

optimizer uses a weight decay of 0.05. The classification
loss and regression loss are weighted at 1.0 and 0.1, respec-
tively. Training is performed on 2 A100 GPUs for 2 days.
For multi-view enhancement, we generate 8 views with the
same elevation as the input view, uniformly spacing them
in azimuth such that adjacent views are 45◦ apart. Finally,
a clustering threshold of 30◦ is applied in the aggregation
step.
Single-Image 3D Generation. During symmetry align-
ment, we disable the image-based MSE loss and apply only
the symmetrically sampled SDS loss based on the detected
symmetry. We run this optimization stage for 400 steps to
obtain more accurate symmetry planes, though fewer steps
often suffice in practice. We convert the rough Gaussian
splatting to a mesh using the marching cubes algorithm. We
remove internal surfaces via ambient occlusion, and uni-
formly sample 10,000 points from the mesh surface to align
the symmetry plane, as discussed in Section 3.4. In the sub-
sequent symmetric SDS optimization stage, we optimize for
500 steps following DreamGaussian [34]. Finally, we refine
the texture for 50 steps.
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